Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-hqlzj Total loading time: 0 Render date: 2025-08-07T23:39:05.209Z Has data issue: false hasContentIssue false

3 - Genomic Imprinting: Matrilineal Regulatory Control Over Gene Expression

Published online by Cambridge University Press:  06 September 2017

Eric B. Keverne
Affiliation:
University of Cambridge
Get access

Information

Type
Chapter
Information
Beyond Sex Differences
Genes, Brains and Matrilineal Evolution
, pp. 52 - 85
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Allen, N. D., Logan, K., Drage, D. J., et al. (1995). Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behaviour. Proc. Natl Acad. Sci. USA 92: 10782–86.CrossRefGoogle Scholar
Bellemer, C., Bortolin-Cavaille, M. L., Schmidt, U., et al. (2012). Microprocessor dynamics and interactions at endogenous imprinted C19MC microRNA genes. J. Cell Sci. 125: 2709–20.Google ScholarPubMed
Bergman, D., Halje, M., Nordin, M., et al. (2013). Insulin-like growth factor 2 in development and disease: a mini review. Gerontology 59: 240–49.CrossRefGoogle ScholarPubMed
Bian, C. & Yu, Z. (2013). PGC7 suppresses TET3 for protecting DNA methylation. Nucl. Acids Res., 2: 2893–905.Google Scholar
Bourc’his, D. & Bestor, T. H. (2006). Origins of extreme sexual dimorphism in genomic imprinting. Cytogenet. Genome Res. 113: 3640.CrossRefGoogle ScholarPubMed
Buckberry, S., Bianco-Miotto, T. & Roberts, C. T. (2014). Imprinted and X-linked non-coding RNAs as potential regulators of human placental function. Epigenetics 9: 8189.CrossRefGoogle ScholarPubMed
Cassidy, S. B., Schwartz, S., Miller, J. L., et al. (2012). Prader–Willi syndrome. Genet. Med. 14: 1026.CrossRefGoogle ScholarPubMed
Daxinger, L. & Whitelaw, E. (2012). Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat. Rev. Genet. 13: 153–62.CrossRefGoogle ScholarPubMed
Deaton, A. M. & Bird, A. (2011). CpG islands and the regulation of transcription. Genes Dev. 25: 1010–22.CrossRefGoogle ScholarPubMed
Gerstein, M. (2012). Genomics: ENCODE leads the way on big data. Nature 489: 208.CrossRefGoogle ScholarPubMed
Gray, A. P. (1972). Mammalian Hybrids. Second (revised) edn. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Gurdon, J. B. (1962). Adult frogs derived from the nuclei of single somatic cells. Dev. Biol. 4: 256–73.CrossRefGoogle ScholarPubMed
Haig, D. (1992). Genomic imprinting and the theory of parent–offspring conflict. Semin. Devel. Biol. 3: 153–60.Google Scholar
Haig, D. & Graham, C. (1991). Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64: 1045–46.Google ScholarPubMed
Hajkova, P., Jeffries, S. J., Lee, C., et al. (2010). Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329: 7882.CrossRefGoogle ScholarPubMed
Hatanake, Y., Shimizu, N., Nishikawa, S., et al. (2013). GSE is a maternal factor involved in active DNA demethylation in zygotes. PLos ONE 8: e60205.CrossRefGoogle Scholar
Hutter, B., Bieg, M., Helms, V., et al. (2010). Imprinted genes show unique patterns of sequence conservation. BMC Genomics 11: 649.CrossRefGoogle ScholarPubMed
Kaneko-Ishino, T. & Ishino, F. (2010). Retrotransposon silencing by DNA methylation contributed to the evolution of placentation and genomic imprinting in mammals. Dev. Growth Differ. 52: 533–43.CrossRefGoogle Scholar
Keniry, A., Oxley, D., Monnier, P., et al. (2012). The H19 linc RNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 14: 659–65.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2014). Mammalian viviparity: a complex niche in the evolution of genomic imprinting. Heredity 113: 138–44.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2015). Genomic imprinting, action, and interaction of maternal and fetal genomes. Proc. Natl Acad. Sci. USA 112: 6834–40.CrossRefGoogle ScholarPubMed
Keverne, E.B., Fundele, R., Narashimha, M., et al. (1996). Genomic imprinting and the differential roles of parental genomes in brain development. Dev. Brain Res. 92: 91100.CrossRefGoogle ScholarPubMed
Laland, K., Mathews, B. & Feldman, M. W. (2016). An introduction to niche construction theory. Evol. Ecol. 30: 191202.CrossRefGoogle ScholarPubMed
Lewontin, R. & Levins, R. (2000). Let the numbers speak. Int. J. Health Serv. 20: 873–77.Google Scholar
Marchetti, F., Essers, J., Kanaar, R., et al. (2007). Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc. Natl Acad. Sci. USA 104: 17725–29.CrossRefGoogle ScholarPubMed
McCole, R. B., Loughran, N. B., Chahal, M., et al. (2011). A case-by-case evolutionary analysis of four imprinted retrogenes. Evolution 65: 1413–27.CrossRefGoogle ScholarPubMed
McGrath, J. & Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37: 179–83.CrossRefGoogle ScholarPubMed
Monk, D. (2015). Genomic imprinting in the human placenta. Am. J. Obstet. Gynecol. 213: S152–S62.CrossRefGoogle ScholarPubMed
Mouillet, J. F., Ouyang, Y., Bayer, A., et al. (2014). The role of trophoblastic microRNAs in placental viral infection. Int. J. Dev. Biol. 58: 281–89.CrossRefGoogle ScholarPubMed
Ollinger, R., Reichmann, J. & Adams, I.R. (2010). Meiosis and retrotransposon silencing during germ cell development in mice. Differentiation 79: 147–58.CrossRefGoogle ScholarPubMed
Renfree, M. B., Hore, T. A., Shaw, G., et al. (2009). Evolution of genomic imprinting: insights from marsupials and monotremes. Annu. Rev. Genomics Hum. Genet. 10: 11.111.22.CrossRefGoogle ScholarPubMed
Renfree, M. B., Suzuki, S. & Kaneko-Ishino, T. (2013). The origin and evolution of genomic imprinting and viviparity in mammals. Phil. Trans. R. Soc. B 368: 20120151.CrossRefGoogle ScholarPubMed
Roberts, T. C. (2015). The microRNA machinery. Adv. Exp. Med. Biol. 887: 1530.CrossRefGoogle ScholarPubMed
Stringer, J. M., Pask, A. J., Shaw, G., et al. (2014). Post-natal imprinting: evidence from marsupials. Heredity (Endinburgh) 113: 145–55.Google ScholarPubMed
Surani, M. A., Barton, S. C. & Norris, M. L. (1984). Roles of paternal and maternal genomes in mouse development. Nature 311: 374–76.Google Scholar
Suzuki, S., Ono, R., Narita, T., et al. (2007). Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 3: e55.CrossRefGoogle ScholarPubMed
Swaney, W. T., Curley, J. P., Champagne, F. A., et al. (2007). Genomic imprinting mediates sexual experience-dependent olfactory learning in male mice. Proc. Natl Acad. Sci. USA 104: 6084–89.CrossRefGoogle ScholarPubMed
Tang, W. W., Kobayashi, T., Irie, N., et al. (2016). Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17: 585600.CrossRefGoogle ScholarPubMed
Thibert, R. L., Larson, A. M., Hseih, D. T., et al. (2013). Neurological manifestations of Angelman syndrome. Pediatr. Neurol. 48: 271–79.CrossRefGoogle ScholarPubMed
Trivers, R. L. & Willard, D. E. (1973). Natural selection of parental ability to vary the sex ratio of offspring. Science 179: 9092.CrossRefGoogle ScholarPubMed
Turelli, P., Castro-Diaz, N., Marxetta, F., et al. (2014). Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 24: 1260–70.CrossRefGoogle ScholarPubMed
Varrault, A., Gueydan, C., Delalbre, A., et al. (2006). Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11: 711722.CrossRefGoogle ScholarPubMed
Wolf, J. B. (2013). Evolution of genomic imprinting as a coordinator of coadapted gene expression. Proc. Natl Acad. Sci. USA 110: 5085–90.CrossRefGoogle ScholarPubMed
Wolf, J. B. & Hager, R. (2006). A maternal–offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol. 4: e380.CrossRefGoogle ScholarPubMed
Wossido, M., Arand, J., Sebastiano, V., et al. (2010). Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29: 1877–88.Google Scholar
Yamanaka, S. (2013). The winding road to pluripotency (Nobel Lecture). Angew. Chem. Ind. Ed. Engl. 52: 13900–09.Google ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×