Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-hn9fh Total loading time: 0 Render date: 2025-08-07T03:44:02.711Z Has data issue: false hasContentIssue false

The Epigenetic Landscape in the Evolutionary Ascent of the Matriline: Concluding Overview

Published online by Cambridge University Press:  06 September 2017

Eric B. Keverne
Affiliation:
University of Cambridge
Get access

Information

Type
Chapter
Information
Beyond Sex Differences
Genes, Brains and Matrilineal Evolution
, pp. 172 - 206
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Ball, M., Carmody, M., Wynne, F., et al. (2009). Expression of pleiotrophin and its receptors in human placenta suggests roles in trophoblast life cycle and angiogenesis. Placenta 30: 649–53.CrossRefGoogle ScholarPubMed
Berletch, J. B., Ma, W., Yang, F., et al. (2015). Escape from X inactivation varies in mouse tissue. PLoS Genet. 11: e1005079.CrossRefGoogle Scholar
Broad, K. D., Curley, J. P. & Keverne, E. B. (2006). Mother–infant bonding and the evolution of mammalian social relationships. Phil. Trans. R. Soc. B 361: 2199–214.CrossRefGoogle ScholarPubMed
Buckberry, S., Bianco-Miotto, T. & Roberts, C. T. (2014). Imprinted and X-linked non-coding RNAs as potential regulators of human placental function. Epigenetics 9: 8189.CrossRefGoogle ScholarPubMed
Cheng, T. L., Wang, Z., Liao, Q., et al. (2014). MeCP2 suppresses nuclear microRNA processing and dendritic growth by regulating DGCR8/Drosha complex. Dev. Cell 28: 547–60.CrossRefGoogle ScholarPubMed
Colucci, F., Boulenouar, S., Keikbusch, J., et al. (2011). How does variability of immune system genes affect placentation? Placenta 32: 539–45.CrossRefGoogle ScholarPubMed
Cortez, D., Marin, R., Toledo-Flores, D., et al. (2014). Origins and functional evolution of Y chromosomes across mammals. Nature 508: 488–93.CrossRefGoogle ScholarPubMed
Curley, J. P. & Keverne, E. B. (2005). Genes, brains and mammalian social bonds. Trends Ecol. Evol. 20: 561–67.CrossRefGoogle ScholarPubMed
Curley, J. P., Barton, S. C., Surani, A. M., et al. (2004). Co-adaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc. R. Soc. Lond. B Biol. Sci. 271: 1303–09.CrossRefGoogle Scholar
Dunbar, R. (2003). Psychology. Evolution of the social brain. Science 302: 1160–61.CrossRefGoogle ScholarPubMed
Ferguson-Smith, A. C. (2011). Genomic imprinting: the mergence of an epigenetic paradigm. Nat. Rev. Genet. 12: 565–75.Google Scholar
Gendrel, A-V. & Heard, E. (2014). Noncoding RNAs and epigenetic mechanisms during X-chromosome inactivation. Annu. Rev. Cell Dev. Biol. 30: 4.14.20.CrossRefGoogle ScholarPubMed
Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Dev. 58: 601–22.CrossRefGoogle ScholarPubMed
Gribnau, J. & Grootegoed, J. A. (2012). Origin and evolution of X chromosome inactivation. Curr. Opin. Cell Biol. 24: 397404.CrossRefGoogle ScholarPubMed
Hackett, J. A., Sengupta, R., Zylic, J. J., et al. (2013). Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339: 448–52.CrossRefGoogle ScholarPubMed
Hackett, J. A. & Surani, M. A. (2013). Beyond DNA: programming and inheritance of parental methylomes. Cell 153: 737–39.CrossRefGoogle ScholarPubMed
Hajkova, P., Jeffries, S. J., Lee, C., et al. (2010). Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329: 7882.CrossRefGoogle ScholarPubMed
Hatanake, Y., Shimizu, N., Nishikawa, S., et al. (2013). GSE is a maternal factor involved in active DNA demethylation in zygotes. PLos ONE 8: e60205.CrossRefGoogle Scholar
Hutter, B., Bieg, M., Helms, V., et al. (2010). Imprinted genes show unique patterns of sequence conservation. BMC Genomics 11: 649.CrossRefGoogle ScholarPubMed
Jedrusik, A., Cox, A., Wicher, K. B., et al. (2015). Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition. Dev. Biol. 398: 147–52.CrossRefGoogle ScholarPubMed
Karre, K. (2008). Natural killer cell recognition of missing self. Nat. Immunol. 9: 477–80.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2004). Understanding well-being in the evolutionary context of brain development Phil. Trans. R. Soc. Lond. B 359: 1349–58.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2006). Trophoblast regulation of maternal endocrine function and behaviour. In: Moffett, A., Loke, C. & McLaren, A. (eds.), Biology and Pathology of Trophoblast. New York, NY: Cambridge University Press, pp. 148–63.Google Scholar
Keverne, E. B. (2013). Importance of genomic imprinting in the evolution and development of the maternal brain In: Pfaff, D & Christen, Y (eds.), Multiple Origins of Sex Differences in Brain. Neuorendocrine Functions and their Pathologies. Berlin: Springer-Verlag, pp. 2134.CrossRefGoogle Scholar
Keverne, E. B. (2014). Mammalian viviparity: a complex niche in the evolution of genomic imprinting. Heredity 113: 138–44.CrossRefGoogle ScholarPubMed
Keverne, E. B. (2015). Genomic imprinting, action, and interaction of maternal and fetal genomes. Proc. Natl Acad. Sci. USA 112: 6834–40.CrossRefGoogle ScholarPubMed
Klinge, C. M. (2015). Estrogen action: receptors, transcripts, cell signaling, and non-coding RNAs in normal physiology and disease. Mol. Cell. Endocrinol. 418: 191–92.CrossRefGoogle ScholarPubMed
Kolb, B., Mychasiuk, R., Muhammad, A., et al. (2012). Experience and the developing prefrontal cortex. Proc. Natl Acad. Sci. USA 109: 17186–93.CrossRefGoogle ScholarPubMed
Leseva, M., Knowles, B. B., Messerschmidt, D. M., et al. (2015). Erase–maintain–establish: natural reprogramming of the mammalian epigenome. Cold Spring Harb. Symp. Quant. Biol. 60: 155–63.Google Scholar
Li, X., Ito, M., Zhou, F., et al. (2008). A maternal–zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev. Cell 15: 547–57.CrossRefGoogle ScholarPubMed
Loke, Y. W. (2013). Life’s Vital Link: The Astonishing Role of the Placenta. Oxford: Oxford University Press.Google Scholar
Loke, Y. W. & King, A. (2000). Immunological aspects of human implantation. J. Respod. Fertil. Suppl. 55: 8390.Google ScholarPubMed
Marchetti, F., Essers, J., Kanaar, R., et al. (2007). Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc. Natl Acad. Sci. USA 104: 17725–29.CrossRefGoogle ScholarPubMed
Meng, L., Ward, A. J., Chun, S., et al. (2015). Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature 518: 409–12.CrossRefGoogle ScholarPubMed
Merzouk, S., Deuve, J. L., Dubois, A., et al. (2014). Lineage-specific regulation of imprinted X inactivation in extraembryonic endoderm stem cells. Epigenetics Chromatin 7: 11.CrossRefGoogle ScholarPubMed
Muir, A., Lever, A. M. & Moffett, A. (2006). Human endogenous retrovirus-W envelope (syncytin) is expressed in both villous and extravillous trophoblast populations. J. Gen. Virol. 87: 2067–71.CrossRefGoogle ScholarPubMed
Murphy, P. J. & Cairns, B. R. (2016). Genome-wide DNA methylation profiling in zebrafish. Methods Cell. Biol. 135: 345–59.CrossRefGoogle ScholarPubMed
Potok, M. E., Nix, D. A., Parnell, T. J., et al. (2013). Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153: 759–72.CrossRefGoogle ScholarPubMed
Prudhomme, J. & Morey, C. (2016). Epigenesis and plasticity of mouse trophoblast stem cells. Cell Mol. Life Sci. 73: 757–74.CrossRefGoogle ScholarPubMed
Renfree, M. B., Suzuki, S. & Kaneko-Ishino, T. (2013). The origin and evolution of genomic imprinting and viviparity in mammals. Phil. Trans. R. Soc. B 368: 20120151.CrossRefGoogle ScholarPubMed
Sandhu, K. S. (2010). Systems properties of proteins encoded by imprinted genes. Epigenetics 5: 627–36.CrossRefGoogle ScholarPubMed
Santos, F., Peat, J., Burgess, H., et al. (2013). Active demethylation in mouse zygotes involves cytosine deamination and base excision repair. Epigenetics Chromatin 6: 39.CrossRefGoogle ScholarPubMed
Sato, Y., Shinka, Y., Sakamoto, K., et al. (2010). The male-determining gene SRY is a hybrid of DGCR8 and SOX3, and is regulated by the transcription of CP2. Mol. Cell. Biochem. 337: 267–75.CrossRefGoogle ScholarPubMed
Schultz, W. (2016). Reward functions of the basal ganglia. J. Neural Transm. (Vienna) 123: 679–93.Google ScholarPubMed
Sun, S., Payer, B., Namekawa, S. H., et al. (2015). Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line. Proc. Natl Acad. Sci. USA 112: 14415–22.CrossRefGoogle Scholar
Tang, W. W., Kobayashi, T., Irie, N., et al. (2016). Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17: 585600.CrossRefGoogle ScholarPubMed
Varrault, A., Gueydan, C., Delalbre, A., et al. (2006). Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev. Cell 11: 711722.CrossRefGoogle ScholarPubMed
Wu, J., Huang, B., Yin, Q., et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature 534: 652–57.CrossRefGoogle ScholarPubMed
Yang, P., Wu, W. & Macfarlan, T. S. (2015). Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. Bio Essays 37: 5259.Google ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×