Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T06:40:27.764Z Has data issue: false hasContentIssue false

Chapter 21 - How Is Climate Change Affecting Polar Bears and Giant Pandas?

from Part IV - Conservation and ManagementConservation and Management

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access

Summary

Anthropogenic greenhouse gas emissions are the primary cause of climate change and an estimated increase of 3.7 to 4.8 °C is predicted by the year 2100 if emissions continue at current levels. Polar bears (Ursus maritimus) and giant pandas (Ailuropoda melanoleuca) provide an interesting comparison study of the impact of climate change on bear species. While polar bears and giant pandas are arguably the most distant of the bear species with regard to life histories and behavior, both are likely to be significantly impacted by the broad-scale changes to their environment that are predicted to result from climate change. Herein, we review the conservation status of both species and their habitats, and present current and predicted evidence of the impacts of a changing climate on polar bear and giant panda survival.

Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 303 - 316
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M. R. & Stocker, T. F. (2014). Impact of delay in reducing carbon dioxide emissions. Nature Climate Change 4(1): 2326.Google Scholar
Amstrup, S. C., Marcot, B. G. & Douglas, D. C. (2008). A Bayesian network modeling approach to forecasting the 21st century worldwide status of polar bears. In: DeWeaver, E. T., Bitz, C. M. & Tremblay, L.-B. (Eds.), Arctic sea ice decline: Observations, projections, mechanisms, and implications. Geophysical Monograph 180 (pp. 213268). Washington DC: American Geophysical Union.Google Scholar
Amstrup, S. C., DeWeaver, E. T., Douglas, D. C., et al. (2010). Greenhouse gas mitigation can reduce sea-ice loss and increase polar bear persistence. Nature 468(7326): 955958.Google Scholar
Araújo, M. B. & New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22(1): 4247.Google Scholar
Atwood, T. C., Peacock, E., McKinney, M. A., et al. (2016a). Rapid environmental change drives increased land use by an arctic marine predator. PLoS ONE 11(6): e0155932.Google Scholar
Atwood, T. C., Marcot, B. G., Douglas, D. C., et al. (2016b). Forecasting the relative influence of environmental and anthropogenic stressors on polar bears. Ecosphere 7(6): e01370.CrossRefGoogle Scholar
Atwood, T. C., Duncan, C., Patyk, K. A., et al. (2017a). Environmental and behavioral changes may influence the exposure of an Arctic apex predator to pathogens and contaminants. Scientific Reports 7(1): 13193.CrossRefGoogle ScholarPubMed
Atwood, T. C., Simac, K. S., Breck, S., York, G. & Wilder, J. (2017b). Human–polar bear interactions in a changing Arctic: existing and emerging concerns. Animal Welfare Series 17: 397418.CrossRefGoogle Scholar
Barnosky, A. D., Hadly, E. A. & Bell, C. J. (2003). Mammalian response to global warming on varied temporal scales. Journal of Mammalogy 84(2): 354368.Google Scholar
Bromaghin, J. F., McDonald, T. L., Stirling, I., et al. (2015). Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications 25(3): 634651.CrossRefGoogle ScholarPubMed
Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Global Change Biology 16(4): 11451157.Google Scholar
Carter, J., Ackleh, A. S., Leonard, B. P. & Wang, H. (1999). Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideaen) life history: a structured population approach to examining carrying capacity when the prey are semelparous. Ecological Modelling 123(2): 207223.Google Scholar
Castro de la Guardia, L., Derocher, A. E., Myers, P. G., Terwisscha van Scheltinga, A. D. & Lunn, N. J. (2013). Future sea ice conditions in Western Hudson Bay and consequences for polar bears in the 21st century. Global Change Biology 19(9): 26752687.Google Scholar
Cherry, S. G., Derocher, A. E., Thiemann, G. W. & Lunn, N. J. (2013). Migration phenology and seasonal fidelity of an Arctic marine predator in relation to sea ice dynamics. The Journal of Animal Ecology 82(4): 912921.Google Scholar
Collins, M., Knutti, R., Arblaster, J., et al. (2013). Long-term climate change: projections, commitments and irreversibility. In: IPCC (Ed.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 10291136). Cambridge: Cambridge University Press.Google Scholar
Derocher, A. E., Stirling, I. & Andriashek, D. (1992). Pregnancy rates and serum progesterone levels of polar bears in western Hudson Bay. Canadian Journal of Zoology 70(3): 561566.CrossRefGoogle Scholar
Diniz-Filho, J. A. F., Bini, L. M., Rangel, T. F., et al. (2009). Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32(6): 897906.CrossRefGoogle Scholar
Douglas, D. C. & Atwood, T. C. (2017). Uncertainties in forecasting the response of polar bears to global climate change. In: Butterworth, A. (Ed.), Marine mammal welfare (pp. 463473). Cham: Springer.Google Scholar
Durner, G. M., Douglas, D. C., Nielson, R. M., et al. (2009). Predicting 21st-century polar bear habitat distribution from global climate models. Ecological Monographs 79(1): 2558.CrossRefGoogle Scholar
Durner, G. M., Douglas, D. C., Albeke, S. E., et al. (2017). Increased Arctic sea ice drift alters adult female polar bear movements and energetics. Global Change Biology 23(9): 34603473.Google Scholar
Durner, G. M., Laidre, K. L. & York, G. S. (2018). Polar bears: proceedings of the 18th working meeting of the IUCN/SSC Polar Bear Specialist Group, Anchorage, Alaska, June 7–11, 2016. Retrieved from https://portals.iucn.org/library/node/47667.Google Scholar
Fan, J., Li, J., Xia, R., et al. (2014). Assessing the impact of climate change on the habitat distribution of the giant panda in the Qinling Mountains of China. Ecological Modelling 274: 1220.Google Scholar
Feng, W. H. (1991). The collection of research papers on Giant Panda. Journal of Sichuan University 3: 713 [in Chinese].Google Scholar
Gautier, D. L., Bird, K. J., Charpentier, R. R., et al. (2009). Assessment of undiscovered oil and gas in the Arctic. Science 324(5931): 11751179.CrossRefGoogle ScholarPubMed
Gong, M., Guan, T., Hou, M., Liu, G. & Zhou, T. (2016). Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecology and Evolution 7(2): 596605.Google Scholar
Guralnick, R. (2006). The legacy of past climate and landscape change on species’ current experienced climate and elevation ranges across latitude: a multispecies study utilizing mammals in western North America. Global Ecology and Biogeography 15(5): 505518.CrossRefGoogle Scholar
Hamilton, S. G., de la Guardia, L. C., Derocher, A. E., et al. (2014). Projected polar bear sea ice habitat in the Canadian Arctic Archipelago. PLoS ONE 9(11): e113746.Google Scholar
Hansen, R. L., Carr, M. M., Apanavicius, C. J., et al. (2010). Seasonal shifts in giant panda feeding behavior: relationships to bamboo plant part consumption. Zoo Biology 29(4): 470483.CrossRefGoogle ScholarPubMed
Harris, R., Garshelis, D., McShea, W. J. & Wang, D. (2014). Introduction. In: McShea, W. J., Garshelis, D., Harris, R., et al. (Eds.), A chance for lasting survival: Ecology and behavior of wild giant pandas (pp. 125). Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Heikkinen, R. K., Luoto, M., Araújo, M. B., et al. (2006). Methods and uncertainties in bioclimatic envelope modelling under climate change. Progress in Physical Geography: Earth and Environment 30(6): 751777.Google Scholar
Huang, Q., Sauer, J. R. & Dubayah, R. O. (2017). Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Global Change Biology 23(9): 36103622.CrossRefGoogle ScholarPubMed
Huang, Q., Fleming, C. H., Robb, B., Lothspeich, A. & Songer, M. (2018). How different are species distribution model predictions? – Application of a new measure of dissimilarity and level of significance to giant panda Ailuropoda melanoleuca. Ecological Informatics 46: 114124.Google Scholar
IPCC. (2007). Summary for policymakers. In: Parry, M., Canziani, O., Palutikof, J., van der Linden, P. & Hanson, C. (Eds.), Climate Change 2007: Impacts, Adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
IPCC. (2014). Summary for policymakers. In: Edenhofer, O., Pichs-Madruga, R., Sokona, Y. et al. (Eds.), Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
IPCC. (2018). Summary for policymakers. Global warming of 1.5°C (p. 32). Geneva: World Meteorological Organization.Google Scholar
Isaac, J. L., Vanderwal, J., Johnson, C. N. & Williams, S. E. (2009). Resistance and resilience: quantifying relative extinction risk in a diverse assemblage of Australian tropical rainforest vertebrates. Diversity and Distributions 15(2), 280288.CrossRefGoogle Scholar
IUCN. (2008). Species susceptibility to climate change impacts. Gland, Switzerland: World Conservation Union.Google Scholar
Jenssen, B. M., Villanger, G. D., Gabrielsen, K. M., et al. (2015). Anthropogenic flank attack on polar bears: interacting consequences of climate warming and pollutant exposure. Frontiers in Ecology and Evolution 3: 16. doi:10.3389/fevo.2015.00016.Google Scholar
Jian, J., Jiang, H., Jiang, Z., et al. (2014). Predicting giant panda habitat with climate data and calculated habitat suitability index (HSI) map. Meteorological Applications 21(2): 210217.CrossRefGoogle Scholar
Kelly, B. P., Burns, J. J. & Quakenbush, L. T. (1988). Responses of ringed seals (Phoca hispida) to noise disturbance. In: Sackinger, W., Jeffries, M., Imm, J. & Tracey, S. (Eds.). Port and ocean engineering under Arctic conditions. Volume II. Symposium on noise and marine mammals (p. 13). Fairbanks, AK: Geophysical Institute, University of Alaska.Google Scholar
Kokic, P., Crimp, S. & Howden, M. (2014). A probabilistic analysis of human influence on recent record global mean temperature changes. Climate Risk Management 3: 112.Google Scholar
Laidre, K. L., Born, E. W., Heagerty, P., et al. (2015). Shifts in female polar bear (Ursus maritimus) habitat use in East Greenland. Polar Biology 38(6): 879893.Google Scholar
Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. (2012). Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489(7417): 554557.Google Scholar
Li, B. V. & Pimm, S. L. (2016). China’s endemic vertebrates sheltering under the protective umbrella of the giant panda. Conservation Biology 30(2): 329339.Google Scholar
Li, R., Xu, M., Wong, M. H. G., et al. (2015a). Climate change threatens giant panda protection in the 21st century. Biological Conservation 182: 93101.Google Scholar
Li, R., Xu, M., Wong, M. H. G., et al. (2015b). Climate change-induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Diversity and Distributions 21(4): 379391.Google Scholar
Li, R., Xu, M., Powers, R., et al. (2017). Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats. Scientific Reports 7(1): 12705.CrossRefGoogle ScholarPubMed
Lone, K., Merkel, B., Lydersen, C., Kovacs, K. M. & Aars, J. (2018). Sea ice resource selection models for polar bears in the Barents Sea subpopulation. Ecography 41(4): 567578.Google Scholar
Loucks, C. J., , Z., Dinerstein, E., et al. (2001). Giant pandas in a changing landscape. Science 294(5546): 14651465.Google Scholar
Lu, Z., Johnson, W. E., Menotti‐Raymond, M., et al. (2001). Patterns of genetic diversity in remaining giant panda populations. Conservation Biology 15(6): 15961607.CrossRefGoogle Scholar
Lunn, N. J., Servanty, S., Regehr, E. V., et al. (2016). Demography of an apex predator at the edge of its range: impacts of changing sea ice on polar bears in Hudson Bay. Ecological Applications: A Publication of the Ecological Society of America 26(5): 13021320.CrossRefGoogle ScholarPubMed
McDonald, K. A. & Brown, J. H. (1992). Using montane mammals to model extinctions due to global change. Conservation Biology 6(3): 409415.Google Scholar
Meehl, G. A., Hu, A., Tebaldi, C., et al. (2012). Relative outcomes of climate change mitigation related to global temperature versus sea-level rise. Nature Climate Change 2: 576.Google Scholar
Molnár, P. K., Derocher, A. E., Thiemann, G. W. & Lewis, M. A. (2010). Predicting survival, reproduction and abundance of polar bears under climate change. Biological Conservation 143(7): 16121622.Google Scholar
Molnár, P. K., Derocher, A. E., Klanjscek, T. & Lewis, M. A. (2011). Predicting climate change impacts on polar bear litter size. Nature Communications 2: 186.Google Scholar
National Academies of Sciences, Engineering, and Medicine, Policy and Global Affairs, Board on Research Data and Information & Committee on Toward an Open Science Enterprise. (2018). Open Science by Design: Realizing a Vision for 21st Century Research. Appendix C, Office of Science and Technology Policy 2013 Memorandum: Increasing Access to the Results of Federally Funded Scientific Research. Washington, DC: National Academies Press. Available from: www.ncbi.nlm.nih.gov/books/NBK525415/Google Scholar
Nuijten, R. J. M., Hendriks, A. J., Jenssen, B. M. & Schipper, A. M. (2016). Circumpolar contaminant concentrations in polar bears (Ursus maritimus) and potential population-level effects. Environmental Research 151: 5057.CrossRefGoogle ScholarPubMed
Obbard, M. E., Cattet, M. R. L., Howe, E. J., et al. (2016). Trends in body condition in polar bears (Ursus maritimus) from the Southern Hudson Bay subpopulation in relation to changes in sea ice. Arctic Science 2(1): 1532.Google Scholar
Obbard, M. E., Stapleton, S., Szor, G., et al. (2018). Re-assessing abundance of Southern Hudson Bay polar bears by aerial survey: effects of climate change at the southern edge of the range. Arctic Science 4(4): 634655.CrossRefGoogle Scholar
O’Brien, S. J., Wenshi, P. & Zhi, L. (1994). Pandas, people and policy. Nature 369(6477): 179.Google Scholar
Overland, J. E., Wood, K. R. & Wang, M. (2011). Warm Arctic – cold continents: climate impacts of the newly open Arctic Sea. Polar Research 30(1): 15787.CrossRefGoogle Scholar
Overland, J., Dunlea, E., Box, J. E., et al. (2019). The urgency of Arctic change. Polar Science 21: 613. doi:10.1016/j.polar.2018.11.008.Google Scholar
Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 3742.Google Scholar
Peacock, E. L., Taylor, M. K., Laake, J. L. & Stirling, I. (2013). Population ecology of polar bears in Davis Strait, Canada and Greenland. Journal of Wildlife Management 77(3): 14.Google Scholar
Peters, R. L. & Darling, J. D. S. (1985). The greenhouse effect and nature reserves. Global warming would diminish biological diversity by causing extinctions among reserve species. BioScience 35(11): 707717.Google Scholar
Pilfold, N. W., Derocher, A. E., Stirling, I., Richardson, E. & Andriashek, D. (2012). Age and sex composition of seals killed by polar bears in the Eastern Beaufort Sea. PLoS ONE 7(7): e41429.CrossRefGoogle ScholarPubMed
Pilfold, N. W., Derocher, A. E., Stirling, I. & Richardson, E. (2014). Polar bear predatory behaviour reveals seascape distribution of ringed seal lairs. Population Ecology 56(1): 129138.Google Scholar
Pilfold, N. W., Hedman, D., Stirling, I., et al. (2016). Mass loss rates of fasting polar bears. Physiological and Biochemical Zoology 89(5): 377388.Google Scholar
Pilfold, N. W., McCall, A., Derocher, A. E., Lunn, N. J. & Richardson, E. (2017). Migratory response of polar bears to sea ice loss: to swim or not to swim. Ecography 40(1): 189199.CrossRefGoogle Scholar
Post, E., Bhatt, U. S., Bitz, C. M., et al. (2013). Ecological consequences of sea-ice decline. Science 341(6145): 519524.Google Scholar
Qiu, J. (2015). Experts question China’s panda survey. Nature News. doi:10.1038/nature.2015.17020Google Scholar
Ramsay, M. A. & Stirling, I. (1988). Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology 214(4): 601633.Google Scholar
Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. (2007). Effects of earlier sea ice breakup on survival and population size of polar bears in western Hudson Bay. Journal of Wildlife Management 71(8): 26732683.Google Scholar
Regehr, E. V., Laidre, K. L., Akçakaya, H. R., et al. (2016). Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines. Biology Letters 12(12): 20160556.Google Scholar
Regehr, E. V., Hostetter, N. J., Wilson, R. R., et al. (2018). Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Scientific Reports 8(1): 16780.Google Scholar
Reid, D. G., Jinchu, H., Sai, D., Wei, W. & Yan, H. (1989). Giant panda Ailuropoda melanoleuca behaviour and carrying capacity following a bamboo die-off. Biological Conservation 49(2): 85104.Google Scholar
Reid, D. G., Taylor, A. H., Jinchu, H. & Zisheng, Q. (1991). Environmental influences on bamboo Bashania fangiana growth and implications for giant panda conservation. Journal of Applied Ecology 28(3): 855868.Google Scholar
Ricke, K. L. & Caldeira, K. (2014). Maximum warming occurs about one decade after a carbon dioxide emission. Environmental Research Letters 9(12): 124002.CrossRefGoogle Scholar
Rode, K. D., Amstrup, S. C. & Regehr, E. V. (2010). Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecological Applications: A Publication of the Ecological Society of America 20(3): 768782.Google Scholar
Rode, K. D., Peacock, E. L., Taylor, M. K., et al. (2012). A tale of two polar bear populations: ice habitat, harvest, and body condition. Population Ecology 54(1): 318.Google Scholar
Rode, K. D., Regehr, E. V., Douglas, D. C., et al. (2014). Variation in the response of an Arctic top predator experiencing habitat loss: feeding and reproductive ecology of two polar bear populations. Global Change Biology 20(1): 7688.Google Scholar
Rode, K. D., Wilson, R. R., Regehr, E. V., et al. (2015a). Increased land use by Chukchi Sea polar bears in relation to changing sea ice conditions. PLoS ONE 10(11): e0142213.Google Scholar
Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. (2015b). Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Frontiers in Ecology and the Environment 13(3): 138145.Google Scholar
Rode, K. D., Wilson, R. R., Douglas, D. C., et al. (2018). Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity. Global Change Biology 24(1): 410423.CrossRefGoogle Scholar
Rosenzweig, C., Casassa, G., Karoly, D. J., et al. (2007). Assessment of observed changes and responses in natural and managed systems. In: Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. (Eds.), Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 79131). Cambridge: Cambridge University Press.Google Scholar
Rosenzweig, C., Karoly, D., Vicarelli, M., et al. (2008). Attributing physical and biological impacts to anthropogenic climate change. Nature 453(7193): 353357.Google Scholar
Rummukainen, M. (2015). Our commitment to climate change is dependent on past, present and future emissions and decisions. Climate Research 64(1): 714.Google Scholar
Schaller, G., Jinchu, H., Wenshi, P. & Zhu, J. (1985). The giant pandas of Wolong. The Quarterly Review of Biology 60(4): 524525.Google Scholar
Shen, G., Pimm, S. L., Feng, C., et al. (2015). Climate change challenges the current conservation strategy for the giant panda. Biological Conservation 190: 4350.Google Scholar
Smith, L. C. & Stephenson, S. R. (2013). New Trans-Arctic shipping routes navigable by midcentury. Proceedings of the National Academy of Sciences 110(13): 48714872.Google Scholar
Songer, M., Delion, M., Biggs, A. & Huang, Q. (2012). Modeling impacts of climate change on giant panda habitat. International Journal of Ecology 3: e108752.Google Scholar
State Forestry Administration of China. (2006). The third national survey report on giant panda in China. Beijing: Science Press.Google Scholar
State Forestry Administration of China. (2015). The fourth national giant panda survey. Beijing: Science Press.Google Scholar
Stern, H. L. & Laidre, K. L. (2016). Sea-ice indicators of polar bear habitat. The Cryosphere 10(5): 20272041.Google Scholar
Stirling, I. (2002). Polar bears and seals in the Eastern Beaufort Sea and Amundsen Gulf: a synthesis of population trends and ecological relationships over three decades. ARCTIC 55(5): 5976.Google Scholar
Stirling, I., McDonald, T. L., Richardson, E. S., Regehr, E. V. & Amstrup, S. C. (2011). Polar bear population status in the northern Beaufort Sea, Canada, 1971–2006. Ecological Applications 21(3): 859876.Google Scholar
Swaisgood, R. R., Wang, D. & Wei, F. (2017). Ailuropoda melanoleuca (errata version published in 2017). The IUCN Red List of Threatened Species. www.iucnredlist.org/en.Google Scholar
Tang, X., Jia, J., Wang, Z., et al. (2015). Scheme design and main result analysis of the fourth national survey on giant panda. Forest Resource Management 1: 1116.Google Scholar
Thackeray, S. J., Henrys, P. A., Hemming, D., et al. (2016). Phenological sensitivity to climate across taxa and trophic levels. Nature 535(7611): 241245.Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32(3): 369373.Google Scholar
Tuanmu, M.-N., Viña, A., Winkler, J. A., et al. (2013). Climate-change impacts on understorey bamboo species and giant pandas in China’s Qinling Mountains. Nature Climate Change 3(3): 249253.Google Scholar
Wang, F., McShea, W. J., Wang, D., et al. (2014). Evaluating landscape options for corridor restoration between giant panda reserves. PLoS ONE 9(8): e105086.Google Scholar
Wang, F., Zhao, Q., McShea, W. J., et al. (2018). Incorporating biotic interactions reveals potential climate tolerance of giant pandas. Conservation Letters 11(6): e12592.Google Scholar
Wang, R., Fan, X., Liu, Q. & Chen, W. (2010). The potential impacts of climate change on giant panda habitats in Sichuan Province. Plateau and Mountain Meteorology Research 30(4): 5760.Google Scholar
Watts, P. & Hansen, S. (1987). Cyclic starvation as a reproductive strategy in the polar bear. Symposium of the Zoological Society of London 57: 305318.Google Scholar
Wei, F., Costanza, R., Dai, Q., et al. (2018). The value of ecosystem services from giant panda reserves. Current Biology 28(13): 21742180.e7.Google Scholar
Wei, W., Nie, Y., Zhang, Z., et al. (2015). Hunting bamboo: foraging patch selection and utilization by giant pandas and implications for conservation. Biological Conservation 186: 260267.Google Scholar
Wei, W., Swaisgood, R. R., Dai, Q., et al. (2018). Giant panda distributional and habitat-use shifts in a changing landscape. Conservation Letters 11(6): e12575.Google Scholar
Wigley, T. M. L. (2005). The climate change commitment. Science 307(5716): 17661769.Google Scholar
Wiig, Ø., Amstrup, S., Atwood, T., et al. (2015). Ursus maritimus. The IUCN Red List of Threatened Species 2015. doi:10.2305/IUCN.UK.2015-4.RLTS.T22823A14871490.en.Google Scholar
Wilson, R. R., Regehr, E. V., Rode, K. D. & St Martin, M. (2016). Invariant polar bear habitat selection during a period of sea ice loss. Proceedings of the Royal Society B: Biological Sciences 283(1836). doi:10.1098/rspb.2016.0380.Google Scholar
Wu, H., Zhan, X.-J., Zhang, Z-.J., et al. (2009). Thirty-three microsatellite loci for noninvasive genetic studies of the giant panda (Ailuropoda melanoleuca). Conservation Genetics 10(3): 649652.Google Scholar
Yan, T., Ran, J., Zhao, C., Zhong, X. & Liang, M. (2017). Climate-change impacts on bamboo distribution and giant panda habitat in Qionglai Mountains. Acta Ecologica Sinica 37(7): 23602367.Google Scholar
Yang, H., Viña, A., Tang, Y., et al. (2017). Range-wide evaluation of wildlife habitat change: a demonstration using giant pandas. Biological Conservation 213: 203209.Google Scholar
Yee, M., Reimer, J., Lunn, N. J., et al. (2017). Polar bear (Ursus maritimus) migration from maternal dens in Western Hudson Bay. ARCTIC 70(3): 319327.Google Scholar
Yu, L., Li, Y.-W., Ryder, O. A. & Zhang, Y.-P. (2007). Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation. BMC Evolutionary Biology 7(1): 198.Google Scholar
Yurkowski, D. J., Hussey, N. E., Ferguson, S. H. & Fisk, A. T. (2018). A temporal shift in trophic diversity among a predator assemblage in a warming Arctic. Royal Society Open Science 5(10). doi:https://doi.org/10.1098/rsos.180259.Google Scholar
Zhang, Y., Mathewson, P. D., Zhang, Q., Porter, W. P. & Ran, J. (2018). An ecophysiological perspective on likely giant panda habitat responses to climate change. Global Change Biology 24(4): 18041816.Google Scholar
Zhang, Z., Swaisgood, R. R., Zhang, S., et al. (2011). Old-growth forest is what giant pandas really need. Biology Letters 7(3): 403406.Google Scholar
Zhang, Z., Sheppard, J. K., Swaisgood, R. R., et al. (2014). Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integrative Zoology 9(1): 4660.Google Scholar
Zhao, S., Zheng, P., Dong, S., et al. (2013). Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nature Genetics 45(1): 6771.Google Scholar
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences 108(43): 17,71417,719.Google Scholar
Zhu, X., Lindburg, D. G., Pan, W., Forney, K. A. & Wang, D. (2001). The reproductive strategy of giant pandas (Ailuropoda melanoleuca): infant growth and development and mother–infant relationships. Journal of Zoology 253(2): 141155.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×