Hostname: page-component-cb9f654ff-w5vf4 Total loading time: 0 Render date: 2025-08-06T06:44:07.151Z Has data issue: false hasContentIssue false

Wolbachia does not give an advantage to the ectoparasitoid Habrobracon hebetor (Say, 1836) when it develops on an infected host

Published online by Cambridge University Press:  30 January 2025

Natalia A. Kryukova*
Affiliation:
Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
Olga V. Polenogova
Affiliation:
Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
Ulyana N. Rotskaya
Affiliation:
Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
Karina A. Zolotareva
Affiliation:
Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
Ekaterina A. Chertkova
Affiliation:
Laboratory of ecological parasitology, Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, Russia
*
Corresponding author: Natalia A. Kryukova; Email: dragonfly6@yandex.ru

Abstract

The effect of Wolbachia on the viability and antimicrobial activity of the ectoparasitoid Habrobracon hebetor was evaluated in laboratory experiments. Two lines of the parasitoid, Wolbachia-infected (W+) and Wolbachia-free (W−), were used. Parasitoid larvae were fed with a host orally infected with a sublethal dose of Bacillus thuringiensis (Bt) and on the host uninfected with Bt. Parasitoid survival was assessed at developmental stages from second-instar larvae to adults. At all developmental stages, there were no statistically significant differences in survival between lines W+ and W−, regardless of host Bt infection. In both W+ and W− lines, the expression of lysozyme-like proteins, antimicrobial peptides (AMPs), and Hsp70 genes was analysed in fourth-instar larvae fed with an infected and uninfected host. In addition, lysozyme-like activity and antibacterial activity were evaluated. The expression of AMPs was significantly higher in W− larvae and did not get induced during the feeding on the Bt-infected host. mRNA expression of lysozyme-like proteins and lysozyme activity were significantly higher in W+ larvae than in W− larvae and did not get induced when the larvae were fed with the infected host. In whole-body homogenates of H. hebetor larvae fed with the uninfected host, antibacterial activity against gram-positive bacteria (Bacillus cereus and Bacillus subtilis) was significantly higher in the W+ line and did not get induced during the feeding with the Bt-infected host. Therefore, there is no obvious immunostimulatory effect of Wolbachia in H. hebetor larvae when they feed on a host infected with an entomopathogenic bacterium.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Albertson, R, Casper‐Lindley, C, Cao, J, Tram, U and Sullivan, W (2009) Symmetric and asymmetric mitotic segregation patterns influence Wolbachia distribution in host somatic tissue. Journal of Cell Science. 122, 45704583. doi:10.1242/jcs.054981.Google ScholarPubMed
Allonsius, CN, Van Beeck, W, De Boeck, I, Wittouck, S and Lebeer, S (2019) The microbiome of the invertebrate model host Galleria mellonella is dominated by enterococcus. Animal Microbiome 1, 7. doi:10.1186/s42523-019-0010-6.Google ScholarPubMed
Amuzu, HE and McGraw, EA (2016) Wolbachia‐based dengue virus inhibition is not tissue‐specific in Aedes aegypti. PLoS Neglected Tropical Diseases 10, e0005145. doi:10.1371/journal.pntd.0005145.CrossRefGoogle Scholar
Bagheri, Z, Talebi, AA, Asgari, S and Mehrabadi, M (2019) Wolbachia induce cytoplasmic incompatibility and affect mate preference in Habrobracon hebetor to increase the chance of its transmission to the next generation. Journal of Invertebrate Pathology 163, 17. doi:10.1016/j.jip.2019.02.005.CrossRefGoogle ScholarPubMed
Bang, SH, Sekhon, SS, Ahn, J-Y, Kim, Y-H and Min, J (2014) Advances in antimicrobial agents based lysosomes. Molecular and Cellular Toxicology 10, 229235. doi:10.1007/s13273-014-0025-8.Google Scholar
Bourtzis, K, Pettigrew, MM and O’Neill, SL (2000) Wolbachia neither induces nor suppresses transcripts encoding antimicrobial peptides. Insect Molecular Biology 9, 635639. doi:10.1046/j.1365-2583.2000.00224.x.CrossRefGoogle ScholarPubMed
Braquart-Varnier, C, Altinli, M, Pigeault, R, Chevalier, FD, Grève, P, Bouchon, D and Sicard, M (2015) The mutualistic side of Wolbachia–Isopod interactions: Wolbachia mediated protection against pathogenic intracellular bacteria. Frontiers in Microbiology 6, 1388. doi:10.3389/fmicb.2015.01388.Google ScholarPubMed
Bravo, A, Gill, SS and Soberón, M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49, 423435. doi:10.1016/j.toxicon.2006.11.022.Google ScholarPubMed
Bravo, A, Gill, SS and Soberón, M (2019) Bacillus thuringiensis: Mechanisms and use. In Schmidt, TM ((ed.)), Encyclopedia of Microbiology. Riverside, California, USA: Academic Press, 307332.Google Scholar
Bruner-Montero, G and Jiggins, FM (2023) Wolbachia protects Drosophila melanogaster against two naturally occurring and virulent viral pathogens. Scientific Reports 13, 8518. doi:10.1038/s41598-023-35726-z.CrossRefGoogle ScholarPubMed
Ciechanover, A (2017) Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Best Practice & Research, Clinical Haematology 30, 341355. doi:10.1016/j.beha.2017.09.001.Google ScholarPubMed
Clinical and Laboratory Standards Institute (2017) Performance Standards for Antimicrobial Susceptibility Testing. In CLSI Supplement M100, 27th. Wayne, PA, USA: CLSI, 15.Google Scholar
Cogni, R, Ding, SD, Pimentel, AC, Day, JP and Jiggins, FM (2021) Wolbachia reduces virus infection in a natural population of Drosophila. Communications Biology 4, 1327. doi:10.1038/s42003-021-02838-z.CrossRefGoogle Scholar
Díaz-Nieto, LM, Gil, MF, Lazarte, JN, Perotti, MA and Berón, CM (2021) Culex quinquefasciatus carrying Wolbachia is less susceptible to entomopathogenic bacteria. Scientific Reports 11, 1094. doi:10.1038/s41598-020-80034-5.CrossRefGoogle ScholarPubMed
Dolezal, T, Krejcova, G, Bajgar, A, Nedbalova, P and Strasser, P (2019) Molecular regulations of metabolism during immune response in insects. Insect Biochemistry and Molecular Biology 109, 3142. doi:10.1016/j.ibmb.2019.04.005.Google ScholarPubMed
Doostalizadeh, N, Talebi, AA, Fathipour, Y, Hoffmann, A and Mehrabadi, M (2024) Lack of impact of Wolbachia on foraging behavior and morphological characteristics of the parasitoid wasp, Habrobracon hebetor (Braconidae). Biological Control 195, 105564. doi:10.1016/j.biocontrol.2024.105564.Google Scholar
Dou, W, Miao, Y, Xiao, J and Huang, D (2021) Association of Wolbachia with gene expression in Drosophila testes. Microbial Ecology 82, 805817. doi:10.1007/s00248-021-01703-0.CrossRefGoogle ScholarPubMed
Eleftherianos, I, Atri, J, Accetta, J and Castillo, JC (2013) Endosymbiotic bacteria in insects: Guardians of the immune system?. Frontiers in Physiology 4, 46. doi:10.3389/fphys.2013.00046.Google ScholarPubMed
Eleftherianos, I, Zhang, W, Heryanto, C, Mohamed, A, Contreras, G, Tettamanti, G, Wink, M and Bassal, T (2021) Diversity of insect antimicrobial peptides and proteins-A functional perspective: A review. International Journal of Biological Macromolecules 191, 277287. doi:10.1016/j.ijbiomac.2021.09.082.Google ScholarPubMed
Fattouh, N, Cazevieille, C and Landmann, F (2019) Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Neglected Tropical Diseases 13, e0007218. doi:10.1371/journal.pntd.0007218.CrossRefGoogle ScholarPubMed
Feldhaar, H and Gross, R (2009) Insects as hosts for mutualistic bacteria. International Journal of Medical Microbiology 299, 18. doi:10.1016/j.ijmm.2008.05.010.Google ScholarPubMed
Fortier, M, Vachon, V, Frutos, R, Schwartz, JL and Laprade, R (2007) Effect of insect larval midgut proteases on the activity of Bacillus thuringiensis Cry toxins. Applied and Environmental Microbiology 73, 62086213. doi:10.1128/AEM.01188-07.Google ScholarPubMed
Frydman, HM, Li, JM, Robson, DN and Wieschaus, E (2006) Somatic stem cell niche tropism in Wolbachia. Nature 441, 509512. doi:10.1038/nature04756.CrossRefGoogle ScholarPubMed
Fytrou, A, Schofield, PG, Kraaijeveld, AR and Hubbard, SF (2006) Wolbachia infection suppresses both host defence and parasitoid counter-defence. Proceedings Biological Sciences 273, 791796. doi:10.1098/rspb.2005.3383.CrossRefGoogle Scholar
Gao, B and Zhu, S (2010) Identification and characterization of the parasitic wasp Nasonia defensins: Positive selection targeting the functional region? Developmental & Comparative Immunology 34, 659668. doi:10.1016/j.dci.2010.01.012.CrossRefGoogle ScholarPubMed
Ghimire, MN and Phillips, TW (2010) Mass rearing of Habrobracon hebetor Say (Hymenoptera: Braconidae) on larvae of the Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae): Effects of host density, parasitoid density, and rearing containers. Journal of Stored Products Research 46, 214220. doi:10.1016/j.jspr.2010.05.003.Google Scholar
Glaser, RL, Meola, MA and Liu, DX (2010) The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PloS One 5, e11977. doi:10.1371/journal.pone.0011977.CrossRefGoogle ScholarPubMed
Gupta, V, Vasanthakrishnan, RB, Siva-Jothy, J, Monteith, KM, Brown, SP and Vale, PF (2017) The route of infection determines Wolbachia antibacterial protection in Drosophila. Proceedings Biological Sciences 284, 20170809. doi:10.1098/rspb.2017.0809CrossRefGoogle Scholar
Hedges, LM, Brownlie, JC, O’Neill, SL and Johnson, KN (2008) Wolbachia and virus protection in insects. Science 322, 702. doi:10.1126/science.1162418Google ScholarPubMed
Hilgenboecker, K, Hammerstein, P, Schlattmann, P, Telschow, A and Werren, JH (2008) How many species are infected with Wolbachia? A statistical analysis of current data. FEMS Microbiology Letters 281, 215220. doi:10.1111/j.1574-6968.2008.01110.x.Google Scholar
Hughes, GL, Ren, X, Ramirez, JL, Sakamoto, JM, Bailey, JA, Jedlicka, AE and Rasgon, JL (2011) Wolbachia Infections in Anopheles gambiae cells: Transcriptomic characterization of a novel host-symbiont interaction. PLOS Pathogens. 7, e1001296. doi:10.1371/journal.ppat.1001296.CrossRefGoogle ScholarPubMed
Ijichi, N, Kondo, N, Matsumoto, R, Shimada, M, Ishikawa, H and Fukatsu, T (2002) Internal spatiotemporal population dynamics of Infection with three Wolbachia strains in the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Applied and Environmental Microbiology 68. doi:10.1128/AEM.68.8.4074-4080.2002.Google ScholarPubMed
Integrated DNA Technologies. OligoAnalyzer Tool—Primer Analysis|IDT. Available at: https://eu.idtdna.com/pages/tools/oligoanalyzer (accessed on 25 November 2024).Google Scholar
Jiménez, NE, Gerdtzen, ZP, Olivera-Nappa, Á, Salgado, JC and Conca, C (2019) A systems biology approach for studying Wolbachia metabolism reveals points of interaction with its host in the context of arboviral infection. PLoS Neglected Tropical Diseases 13, e0007678. doi:10.1371/journal.pntd.0007678.Google ScholarPubMed
Kageyama, D, Narita, S, Imamura, T and Miyanoshita, A (2010) Detection and identification of Wolbachia endosymbionts from laboratory stocks of stored-product insect pests and their parasitoids. Journal of Stored Products Research 46, 1319. doi:10.1016/j.jspr.2009.07.003.Google Scholar
Kleino, A and Silverman, N (2019) Regulation of the Drosophila Imd pathway by signaling amyloids. Insect Biochemistry and Molecular Biology 108, 1623. doi:10.1016/j.ibmb.2019.03.003.CrossRefGoogle ScholarPubMed
Kremer, N, Charif, D, Henri, H, Gavory, F, Wincker, P, Mavingui, P and Vavre, F (2012) Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiology 12. doi:10.1186/1471-2180-12-S1-S7.Google Scholar
Kryukova, NA, Dubovskiy, IM, Chertkova, EA, Vorontsova, YL, Slepneva, IA and Glupov, VV (2011) The effect of Habrobracon hebetor venom on the activity of the prophenoloxidase system, the generation of reactive oxygen species and encapsulation in the haemolymph of Galleria mellonella larvae. Journal of Insect Physiology 57, 796800. doi:10.1016/j.jinsphys.2011.03.008.Google ScholarPubMed
Kryukova, NA, Kryukov, VY, Polenogova, OV, Chertkova, ЕА, Tyurin, MV, Rotskaya, UN, Alikina, T, Kabilov, МR and Glupov, VV (2023) The endosymbiotic bacterium Wolbachia (Rickettsiales) alters larval metabolism of the parasitoid Habrobracon hebetor (Hymenoptera: Braconidae). Archives of Insect Biochemistry and Physiology 114, e22053. doi:10.1002/arch.22053.CrossRefGoogle ScholarPubMed
Landmann, F, Bain, O, Martin, C, Uni, S, Taylor, MJ and Sullivan, W (2012) Both asymmetric mitotic segregation and cellto‐cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes. Biology Open 1, 536547. doi:10.1242/bio.2012737.Google ScholarPubMed
Landmann, F, Foster, JM, Slatko, B and Sullivan, W (2010) Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues. PLoS Neglected Tropical Diseases 4, e758. doi:10.1371/journal.pntd.0000758.Google ScholarPubMed
Lemaitre, B and Hoffmann, J (2007) The host defense of Drosophila melanogaster. Annual Review of Immunology 25, 697743. doi:10.1146/annurev.immunol.25.022106.141615Google ScholarPubMed
Li, J, Wang, N, Liu, Y, and Qiu, S (2018) Proteomics of Nasonia vitripennis and the effects of native Wolbachia infection on N. vitripennis. PeerJ 6, e4905. doi:10.7717/peerj.4905Google ScholarPubMed
McKenzie, HA and White, FH (1991) Lysozyme and alpha-lactalbumin: Structure, function, and interrelationships. Advances in Protein Chemistry 41, 173315. doi:10.1016/s0065-3233(08)60198-9.CrossRefGoogle ScholarPubMed
Moreira, LA, Iturbe-Ormaetxe, I, Jeffery, JA, Lu, G, Pyke, AT, Hedges, LM, Rocha, BC, Hall-Mendelin, S, Day, A, Riegler, M, Hugo, LE, Johnson, KN, Kay, BH, McGraw, EA, van den Hurk, AF, Ryan, PA and O’Neill, SL (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 12681278. doi:10.1016/j.cell.2009.11.042Google ScholarPubMed
Moreira-Ferro, CK, Daffre, S, James, AA and Marinotti, O (1998) A lysozyme in the salivary glands of the malaria vector Anopheles darlingi. Insect Molecular Biology 7, 257264. doi:10.1111/j.1365-2583.1998.00067.xGoogle ScholarPubMed
Mousson, L, Zouache, K, Arias-Goeta, C, Raquin, V, Mavingui, P and Failloux, AB (2012) The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Neglected Tropical Diseases 6, e1989. doi:10.1371/journal.pntd.0001989Google ScholarPubMed
Nasehi, S, Fathipour, Y and Mehrabadi, M (2021) Wolbachia and cytoplasmic incompatibility in Habrobracon hebetor (Hym.:Braconidae). Plant Pests Research 11, 5366. doi:10.22124/iprj.2021.5036Google Scholar
National Library of Medicine. BLAST: Basic Local Alignment Search Tool. Available online: https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on 25 November 2024).Google Scholar
Neyen, C, Poidevin, M, Roussel, A and Lemaitre, B (2012) Tissue- and Ligand-Specific Sensing of Gram-Negative Infection in Drosophila by PGRP-LC Isoforms and PGRP-LE. The Journal of Immunology 189, 18861897. doi:10.4049/jimmunol.1201022.Google ScholarPubMed
Oluwafemi, A Rotimi, Rao, Q, Wang, X and Zhang, H (2009) Effect of Bacillus thuringiensis on Habrobracon hebetor during combined biological control of Plodia interpunctella. Insect Science 16(5), 409416. 10.1111/j.1744-7917.2009.01262.xCrossRefGoogle Scholar
Pan, X, Zhou, G, Wu, J, Bian, G, Lu, P, Raikhel, AS and Xi, Z (2012) Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences 109, 2331. doi: 10.1073/pnas.1116932108.CrossRefGoogle Scholar
Panteleev, DY, Goryacheva, II, Andrianov, BV, Reznik, NL, Lazebny, OE and Kulikov, AM (2007) The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster. Russian Journal of Genetics 43, 10661069. doi:10.1134/S1022795407090153.Google ScholarPubMed
Perlmutter, JI, Atadurdyyeva, A, Schedl, ME and Unckless, RL (2023) Wolbachia enhances the survival of Drosophila infected with fungal pathogens. bioRxiv 09, (30.560320). doi:10.1101/2023.09.30.560320.Google Scholar
Pietri, JE, DeBruhl, H and Sullivan, W (2016) The rich somatic life of Wolbachia. MicrobiologyOpen 5, 923936. doi:10.1002/mbo3.390.Google ScholarPubMed
Polenogova, OV, Kabilov, MR, Tyurin, MV, Rotskaya, UN, Krivopalov, AV, Morozova, VV, Mozhaitseva, K, Kryukova, NA, Alikina, T, Kryukov, VY and Glupov, VV (2019) Parasitoid envenomation alters the Galleria mellonella midgut microbiota and immunity, thereby promoting fungal infection. Scientific Reports 9, 4012. doi:10.1038/s41598-019-40301-6.CrossRefGoogle ScholarPubMed
Porter, J and Sullivan, W (2023) The cellular lives of Wolbachia. Nature Reviews, Microbiology 21, 750766. doi:10.1038/s41579-023-00918-x.Google ScholarPubMed
Prigot-Maurice, C, Cerqueira De Araujo, A, Beltran-Bech, S and Braquart-Varnier, C (2021) Immune priming depends on age, sex and Wolbachia in the interaction between Armadillidium vulgare and Salmonella. Journal of Evolutionary Biology 34, 256269. doi:10.1111/jeb.13721.CrossRefGoogle ScholarPubMed
Rancès, E, Ye, YH, Woolfit, M, McGraw, EA and O’Neill, SL (2012) The relative importance of innate immune priming in Wolbachia-mediated Dengue interference. PLOS Pathogens 8, e1002548. doi:10.1371/journal.ppat.1002548Google ScholarPubMed
Regel, R, Matioli, SR and Terra, WR (1998) Molecular adaptation of Drosophila melanogaster lysozymes to a digestive function. Insect Biochemistry and Molecular Biology 28, 309319. doi:10.1016/S0965-1748(97)00108-2Google ScholarPubMed
Rottschaefer, SM, Lazzaro, BP and Moreira, LA (2012) No effect of Wolbachia on resistance to intracellular infection by pathogenic bacteria in Drosophila melanogaster. PloS One 7, e40500. doi:10.1371/journal.pone.0040500CrossRefGoogle ScholarPubMed
Scheirer, CJ, Ray, WS and Hare, N (1976) The analysis of ranked data derived from completely randomized factorial designs. Biometrics 32, 429434. doi:10.2307/2529511Google ScholarPubMed
Schultz, MJ, Tan, AL, Gray, CN, Isern, S, Michael, SF, Frydman, HM and Connor, JH (2018) Wolbachia wStri blocks Zika virus growth at two independent stages of viral replication. Mbio 9. doi:10.1128/mbio.00738-18.Google ScholarPubMed
Sicard, M, Dittmer, J, Grève, P, Bouchon, D and Braquart‐Varnier, C (2014) The Wolbachia in their ‘host ecosystem.’ Environmental Microbiology 16, 35833607. doi:10.1111/1462-2920.12573.Google Scholar
Soberón, M, Gill, SS and Bravo, A (2009) Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences 66, 13371349. doi:10.1007/s00018-008-8330-9.Google ScholarPubMed
Teixeira, L, Ferreira, A and Ashburner, M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biology 6, doi:10.1371/journal.pbio.1000002.Google ScholarPubMed
Tiwary, A, Babu, R, Sen, R and Raychoudhury, R (2022) Bacterial supergroup-specific “cost” of Wolbachia infections in Nasonia vitripennis. Ecology and Evolution 12, e9219. doi:10.1002/ece3.9219Google ScholarPubMed
Treweek, TM, Meehan, S, Ecroyd, H and Carver, JA (2015) Small heat-shock proteins: Important players in regulating cellular proteostasis. Cellular and Molecular Life Sciences 72, 429451.CrossRefGoogle ScholarPubMed
Tvedte, ES, Walden, KK, McElroy, KE, Werren, JH, Forbes, AA, Hood, GR, Logsdon, JM Jr., Feder, JL and Robertson, HM (2019) Genome of the parasitoid wasp Diachasma alloeum, an emerging model for ecological speciation and transitions to asexual reproduction. Genome Biology and Evolution 11, 27672773. doi:10.1093/gbe/evz205CrossRefGoogle ScholarPubMed
Van den Hurk, AF, Hall-Mendelin, S, Pyke, AT, Frentiu, FD, McElroy, K, Day, A, Higgs, S and O’Neill, SL (2012) Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Neglected Tropical Diseases 6, e1892. doi:10.1371/journal.pntd.0001892.CrossRefGoogle ScholarPubMed
van Nouhuys, S, Kohonen, M and Duplouy, A (2016) Wolbachia increases the susceptibility of a parasitoid wasp to hyperparasitism. Journal of Experimental Biology 219, 29842990. doi:10.1242/jeb.140699.Google ScholarPubMed
Weinert, LA, Araujo-Jnr, EV, Ahmed, MZ and Welch, JJ (2015) The incidence of bacterial endosymbionts in terrestrial arthropods. Proceedings Biological Sciences 282, 20150249. doi: 10.1098/rspb.2015.0249.CrossRefGoogle Scholar
Wojda, I, Cytryńska, M, Zdybicka-Barabas, A and Kordaczuk, J (2020) Insect defense proteins and peptides. Subcellular Biochemistry 94, 81121. doi:10.1007/978-3-030-41769-7_4.Google ScholarPubMed
Wong, ZS, Hedges, LM, Brownlie, JC and Johnson, KN (2011) Wolbachia-mediated antibacterial protection and immune gene regulation in Drosophila. PloS One 6, e25430. doi:10.1371/journal.pone.0025430.CrossRefGoogle ScholarPubMed
Wu, M, Sun, LV, Vamathevan, J, Riegler, M, Deboy, R, Brownlie, JC, McGraw, EA, Martin, W, Esser, C, Ahmadinejad, N, Wiegand, C, Madupu, R, Beanan, MJ, Brinkac, LM, Daugherty, SC, Durkin, AS, Kolonay, JF, Nelson, WC, Mohamoud, Y, Lee, P, Berry, K, Young, MB, Utterback, T, Weidman, J, Nierman, WC, Paulsen, IT, Nelson, KE, Tettelin, H, O’Neill, SL and Eisen, JA (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PLoS Biology. 2, E69. doi:10.1371/journal.pbio.0020069.CrossRefGoogle ScholarPubMed
Xi, Z, Gavotte, L, Xie, Y and Dobson, SL (2008) Genome-wide analysis of the interaction between the endosymbiotic bacterium Wolbachia and its Drosophila host. BMC Genomics 9. doi:10.1186/1471-2164-9-1.Google ScholarPubMed
Xie, J, Butler, S, Sanchez, G and Mateos, M (2014) Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity 112, 399408. doi:10.1038/hdy.2013.118Google ScholarPubMed
Yao, Z, Wang, A, Li, Y, Cai, Z, Lemaitre, B and Zhang, H (2016) The dual oxidase gene BdDuox regulates the intestinal bacterial community homeostasis of Bactrocera dorsalis. The ISME Journal 10, 10371050. doi:10.1038/ismej.2015.202.CrossRefGoogle ScholarPubMed
Ye, J, Zhao, H, Wang, H, Bian, J and Zheng, R (2010) A defensin antimicrobial peptide from the venoms of Nasonia vitripennis. Toxicon 56, 101106. doi:10.1016/j.toxicon.2010.03.024.Google ScholarPubMed
Ye, YH, Woolfit, M, Rancès, E, O’Neill, SL and McGraw, EA (2013) Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Neglected Tropical Diseases 7, e2362. doi:10.1371/journal.pntd.0002362.CrossRefGoogle ScholarPubMed
Zeng, T, Jaffar, S, Xu, Y and Qi, Y (2022) The intestinal immune defense system in insects. International Journal of Molecular Sciences 23, 15132. doi:10.3390/ijms232315132.CrossRefGoogle ScholarPubMed
Supplementary material: File

Kryukova et al. supplementary material

Kryukova et al. supplementary material
Download Kryukova et al. supplementary material(File)
File 92.9 KB