Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-18T06:31:40.485Z Has data issue: false hasContentIssue false

Comparison of resistance to Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) among cultivars of mulberry (Moraceae)

Published online by Cambridge University Press:  19 May 2025

Changgui Song
Affiliation:
Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400799, China
Biwen Yang
Affiliation:
Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400799, China
Chuanshu Huang
Affiliation:
Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400799, China
Pei Zhao
Affiliation:
Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400799, China
Dong Wei
Affiliation:
Chongqing Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
Feng Hong*
Affiliation:
College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, 464000, China
Zhiguang Song*
Affiliation:
Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400799, China
*
Corresponding authors: Feng Hong and Zhiguang Song; Emails: hngfng@xyafu.edu.cn and szg0115@163.com
Corresponding authors: Feng Hong and Zhiguang Song; Emails: hngfng@xyafu.edu.cn and szg0115@163.com

Abstract

Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) is a destructive monophagous pest of mulberry, Morus Linnaeus (Moraceae), trees. In order to identify mulberry cultivars resistant to G. pyloalis, 12 cultivars were examined using field and in vitro testing. Field observations indicated that cultivars AlbapC, BombyL, LaeviT, and CathaB had less than 10.0% damage, with no observed damage on the CathaB cultivar. The life table parameters showed that CathaB cultivar had the longest larval and pupal duration (23.2 days in total), the shortest adult period (5.3 days), the lowest rates of both pupation (55.0%) and adult emergence (69.7%), the highest adult mortality (61.7%), the lowest average weight of pupae (30.4 mg), and the lowest daily oviposition (5.0 eggs/female/day). The larval performance of G. pyloalis in the field revealed that CathaB had the lowest larval density. Correlation analyses confirmed that significant correlations exist between all the performance parameters of G. pyloalis for both the observed damage and larval performance. Leaf characterisation of selected cultivars indicated CathaB had significantly higher values of leaf wax, trichome density, soluble glucose, and protein contents compared to MultiQ. This study would be a valuable reference for evaluating pest-resistant cultivars and establishing a theoretical foundation for managing G. pyloalis.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Subject editor: Suzanne Blatt

References

Abel, C.A., Wilson, R.L., Wiseman, B.R., White, W.H., and Davis, F.M. 2000. Conventional resistance of experimental maize lines to corn earworm (Lepidoptera: Noctuidae), fall armyworm (Lepidoptera: Noctuidae), southwestern corn borer (Lepidoptera: Crambidae), and sugarcane borer (Lepidoptera: Crambidae). Journal of Economic Entomology, 93: 982988. https://doi.org/10.1603/0022-0493-93.3.982.CrossRefGoogle ScholarPubMed
Cao, H.M., Hu, G.P., Du, X.M., Shi, X.P., Hu, L.C., Deng, Z.H., and Zheng, S.Y. 2020. Application and effect of sex pheromone attractant for mulberry borer. Science of Sericulture, 46: 07570763. https://doi.org/10.13441/j.cnki.cykx.2020.06.013.Google Scholar
Cao, H.M., Hu, G.P., Shi, X.P., Wang, J.W., Cai, X., Hu, L.C., and Wang, F. 2023. Effects of larval density on the growth, development and reproduction of the mulberry borer, Glyphodes pyloalis (Lepidoptera: Pyralidae). Acta Entomologica Sinica, 66: 7784. https://doi.org/10.16380/j.kcxb.2023.01.010.Google Scholar
Cardona, J.B., Grover, S., Bowman, M.J., Busta, L., Kundu, P., Koch, K.G., et al. 2023. Sugars and cuticular waxes impact sugarcane aphid (Melanaphis sacchari) colonization on different developmental stages of sorghum. Plant Science, 330: 111646. https://doi.org/10.1016/j.plantsci.2023.111646.CrossRefGoogle ScholarPubMed
Carrasco, D., Larsson, M.C., and Anderson, P. 2015. Insect host plant selection in complex environments. Current Opinion in Insect Science, 8: 17. https://doi.org/10.1016/j.cois.2015.01.014.CrossRefGoogle ScholarPubMed
Chu, J., Jiang, D.L., Yan, M.W., Li, Y.J.C., Wang, J., Wu, F.A., and Sheng, S. 2020. Identifications, characteristics, and expression patterns of small heat shock protein genes in a major mulberry pest, Glyphodes pyloalis (Lepidoptera: Pyralidae). Journal of Insect Science, 20: 110. https://doi.org/10.1093/jisesa/ieaa029.CrossRefGoogle Scholar
da Silva, P.R., dos Santos, C.E.M., da Silva, R.S., da Silva, É.M., Lopes, M.C., da Silva Paes, J., and Picanço, M.C. 2020. Assessing the resistance of passion fruit genotypes as control method to Tetranychus mexicanus . Crop Protection, 128: 104990. https://doi.org/10.1016/j.cropro.2019.104990.CrossRefGoogle Scholar
Dong, H.L., Zhang, S.X., Tao, H., Chen, Z.H., Li, X., Qiu, J.F., et al. 2017. Metabolomics differences between silkworms (Bombyx mori) reared on fresh mulberry (Morus) leaves or artificial diets. Scientific Reports, 7: 10972. https://doi.org/10.1038/s41598-017-11592-4.CrossRefGoogle ScholarPubMed
Gardner, E.M., Garner, M., Cowan, R., Dodsworth, S., Epitawalage, N., Arifiani, D., et al. 2021. Repeated parallel losses of inflexed stamens in Moraceae: phylogenomics and generic revision of the tribe Moreae and the reinstatement of the tribe Olmedieae (Moraceae). Taxon, 70: 946988. https://doi.org/10.1002/tax.12526.CrossRefGoogle Scholar
Grintzalis, K., Georgiou, C.D., and Schneider, Y.J. 2015. An accurate and sensitive Coomassie Brilliant Blue G-250–based assay for protein determination. Analytical Biochemistry, 480: 2830. https://doi.org/10.1016/j.ab.2015.03.024.CrossRefGoogle ScholarPubMed
Hanley, M.E., Lamont, B.B., Fairbanks, M.M., and Rafferty, C.M. 2007. Plant structural traits and their role in anti-herbivore defense. Perspectives in Plant Ecology, Evolution and Systematics, 8: 157178. http://doi.org/10.1016/j.ppees.2007.01.001.CrossRefGoogle Scholar
He, N.J., Zhang, C., Qi, X.W., Zhao, S.C., Tao, Y., Yang, G.J., et al. 2013. Draft genome sequence of the mulberry tree, Morus notabilis . Nature Communications, 4: 2445. https://doi.org/10.1038/ncomms3445.CrossRefGoogle ScholarPubMed
Hemati, S.A., Naseri, B., and Razmjou, J. 2013. Reproductive performance and growth indices of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae), on various host plants. Journal of Crop Protection, 2: 193208. https://doi.org/10.1007/s10340-013-0515-9.Google Scholar
Horgan, F.G., Garcia, C.P.F., Haverkort, F., de Jong, P.W., and Ferrater, J.B. 2020. Changes in insecticide resistance and host range performance of planthoppers artificially selected to feed on resistant rice. Crop Protection. 127: 104963. https://doi.org/10.1016/j.cropro.2019.104963.CrossRefGoogle ScholarPubMed
Jin, X.L., Shi, C.H., Yu, C.Y., Yamada, T., and Sacks, E.J. 2017. Determination of leaf water content by visible and near-infrared spectrometry and multivariate calibration in Miscanthus . Frontiers in Plant Science, 8: 721. https://doi.org/10.3389/fpls.2017.00721.CrossRefGoogle ScholarPubMed
Kumari, P., Jasrotia, P., Kumar, D., Kashyap, P.L., Kumar, S., Mishra, C.N., et al. 2022. Biotechnological approaches for host plant resistance to insect pests. Frontiers in Genetics, 13: 914029. https://doi.org/10.3389/fgene.2022.914029.CrossRefGoogle ScholarPubMed
Leng, F., Sun, S., Jing, Y., Wang, F., Wei, Q., Wang, X., and Zhu, X. 2016. A rapid and sensitive method for determination of trace amounts of glucose by anthrone-sulfuric acid method. Bulgarian Chemical Communications, 48: 109113.Google Scholar
Leybourne, D.J. and Aradottir, G.I. 2022. Common resistance mechanisms are deployed by plants against sap-feeding herbivorous insects: insights from a meta-analysis and systematic review. Scientific Reports, 12: 17836. https://doi.org/10.1038/s41598-022-20741-3.CrossRefGoogle ScholarPubMed
Liu, Z.X., Xing, X.R., Liang, X.H., Ding, J.H., Li, Y.J.C., Shao, Y., et al. 2022. The role of glutathione-S-transferases in phoxim and chlorfenapyr tolerance in a major mulberry pest, Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Pesticide Biochemistry and Physiology, 181: 105004. https://doi.org/10.1016/j.pestbp.2021.105004.CrossRefGoogle Scholar
Nepal, M. and Ferguson, C. 2012. Phylogenetics of Morus (Moraceae) inferred from ITS and trnL–trnF sequence data. Systematic Botany, 37: 442450. https://doi.org/10.2307/41515134.CrossRefGoogle Scholar
Oftadeh, M., Jalali Sendi, J., and Khosravi, R. 2015. Life table parameters of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) on four varieties of mulberry, Morus alba L. (Moraceae). Journal of Asia-Pacific Entomology, 18: 315320. https://doi.org/10.1016/j.aspen.2015.03.007.CrossRefGoogle Scholar
Ou, T., Gao, H., Jiang, K., Yu, J., Zhao, R., Liu, X., et al. 2022. Endophytic Klebsiella aerogenes HGG15 stimulates mulberry growth in hydro-fluctuation belt and the potential mechanisms as revealed by microbiome and metabolomics. Frontiers in Microbiology, 13: 978550. https://doi.org/10.3389/fmicb.2022.978550.CrossRefGoogle ScholarPubMed
Poltavsky, A.N. and Ilyina, E.V. 2017. Glyphodes pyloalis Walker, 1859 (Lepidoptera, Crambidae): a new species of tropical snout-moth for the fauna of Dagestan. Russian Journal of Biological Invasions, 8: 101103. https://doi.org/10.1134/S2075111717010118.CrossRefGoogle Scholar
Punithavalli, M., Muthukrishnan, N.M., and Rajkumar, B.M. 2013. Influence of rice genotypes on folding and spinning behaviour of leaffolder (Cnaphalocrocis medinalis) and its interaction with leaf damage. Rice Science, 20: 442450. https://doi.org/10.1016/S1672-6308(13)60154-7.CrossRefGoogle Scholar
Razmjou, J., Naseri, B., and Hemati, S.A. 2013. Comparative performance of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae), on various host plants. Journal of Pest Science, 87: 2937. https://doi.org/10.1007/s10340-013-0515-9.CrossRefGoogle Scholar
Rousselin, A., Sauge, M., Jordan, M., Vercambre, G., Lescourret, F., and Bevacqua, D. 2016. Nitrogen and water supplies affect peach tree–green peach aphid interactions: the key role played by vegetative growth. Agricultural and Forest Entomology, 18: 367375. https://doi.org/10.1111/afe.12168.CrossRefGoogle Scholar
Sajeevan, R.S., Nataraja, K.N., Shivashankara, K.S., Pallavi, N., Gurumurthy, D.S., and Shivanna, M.B. 2017. Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Frontiers in Plant Science, 8: 418. https://doi.org/10.3389/fpls.2017.00418.CrossRefGoogle ScholarPubMed
Sánchez, M. 2000. World distribution and utilization of mulberry, potential for animal feeding. In FAO Animal Production and Health Conference, Rome, Italy, between May and August 2000. Edited by Sánchez, M.. Food and Agriculture Organisation of the United Nations, Rome, Italy. Pp. 19.Google Scholar
Shao, Z.M., Li, Y.J.C., Zhang, X.R., Chu, J., Ma, J.H., Liu, Z.X., et al. 2020. Identification and functional study of chitin metabolism and detoxification related genes in Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), based on transcriptome analysis. International Journal of Molecular Sciences, 21: 1904. https://doi.org/10.3390/ijms21051904.CrossRefGoogle ScholarPubMed
Sharma, G., Malthankar, P.A., Mathur, V., and Reddy, G.V.P. 2021. Insect–plant interactions: a multilayered relationship. Annals of the Entomological Society of America, 114: 116. https://doi.org/10.1093/aesa/saaa032.CrossRefGoogle Scholar
Sharma, H.C. 2007. Host plant resistance to insects: modern approaches and limitations. Indian Journal of Plant Protection, 35: 179184.Google Scholar
Smith, C.M. 2005. Plant Resistance to Arthropods: Molecular and Conventional Approaches. Springer Press, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Song, C.G., Song, Z.G., Zhao, P., Huang, C.S., and Luo, T.M. 2023. Rapid sex identification method of Glyphodes pyloalis (Walker) pupae and adults and its application. China Sericulture, 44: 2933. https://doi.org/10.16839/j.cnki.zgcy.2023.01.008.Google Scholar
Su, H., Gao, Y., Liu, Y., Li, X., Liang, Y., Dai, X., et al. 2020. Comparative transcriptome profiling reveals candidate genes related to insecticide resistance of Glyphodes pyloalis . Bulletin of Entomological Research, 110: 5767. https://doi.org/10.1017/s0007485319000257.CrossRefGoogle ScholarPubMed
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S., and Sharma, H.C. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 7: 13061320. https://doi.org/10.4161/psb.21663.CrossRefGoogle ScholarPubMed
Watanabe, H., Kurihara, Y., Wang, Y.X., and Shimizu, T. 1988. Mulberry pyralid, Glyphodes pyloalis: habitual host of nonoccluded viruses pathogenic to the silkworm, Bombyx mori . Journal of Invertebrate Pathology, 52: 401408. https://doi.org/10.1016/0022-2011(88)90052-3.CrossRefGoogle Scholar
Wetzel, W., Kharouba, H., Robinson, M., Holyoak, M., and Karban, R. 2016. Variability in plant nutrients reduces insect herbivore performance. Nature, 539: 425427. https://doi.org/10.1038/nature20140.CrossRefGoogle Scholar
Yuan, Q.X., Xie, Y.F., Wang, W., Yan, Y.H., Ye, H., Jabbar, S., and Zeng, X.X. 2015. Extraction optimization, characterization and antioxidant activity in vitro of polysaccharides from mulberry (Morus alba L.) leaves. Carbohydrate Polymers, 128: 5262. https://doi.org/10.1016/j.carbpol.2015.04.028.CrossRefGoogle ScholarPubMed
Yuan, Q. and Zhao, L. 2017. The mulberry (Morus alba L.) fruit: a review of characteristic components and health benefits. Journal of Agricultural and Food Chemistry, 65: 1038310394. https://doi.org/10.1021/acs.jafc.7b03614.CrossRefGoogle Scholar
Zaffaroni, M., Cunniffe, N.J., and Bevacqua, D. 2020. An ecophysiological model of plant–pest interactions: the role of nutrient and water availability. Journal of The Royal Society Interface, 17: 20200356. https://doi.org/10.1098/rsif.2020.0356.CrossRefGoogle ScholarPubMed
Zhang, K., Chen, Y.B., He, X.P., Du, B., Li, G., Jiang, X.M., et al. 2022. Occurrence and control strategies of Glyphodes pyloalis Walker in mulberry fields of Nanchong sericulture district, Sichuan. Newsletter of Sericultural Science, 42: 1821.Google Scholar
Zhao, W.Y., Zhuang, Y.Q., Chen, Y.M., Lou, Y.G., and Li, R. 2023. Enhanced chemical and physical defense traits in a rice cultivar showing resistance to leaffolder infestation. Crop Health, 1: 113. https://doi.org/10.1007/s44297-023-00010-z.CrossRefGoogle Scholar
Zhao, X.H., Bai, X.C., and Shi, G.F. 2013. Research progress on outbreak regularity of Glyphodes pyloalis and control techniques. Bulletin of Sericulture, 44: 510.Google Scholar