Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T11:18:37.416Z Has data issue: false hasContentIssue false

Fermiite, Na4(UO2)(SO4)3·3H2O and oppenheimerite, Na2(UO2)(SO4)2·3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  02 January 2018

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Joe Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
Jiří Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9, Czech Republic
*

Abstract

The new minerals fermiite (IMA2014-068), Na4(UO2)(SO4)3·3H2O and oppenheimerite (IMA2014-073), Na2(UO2)(SO4)2·3H2O, were found in the Blue Lizard mine, San Juan County, Utah, USA, where they occur together as secondary alteration phases in association with blödite, bluelizardite, chalcanthite, epsomite, gypsum, hexahydrite, kröhnkite, manganoblödite, sideronatrite, tamarugite and wetherillite.

Fermiite descriptive details: pale greenish-yellow prisms; transparent; vitreous lustre; bright greenishwhite fluorescence; white streak; hardness (Mohs) 2½; brittle; conchoidal fracture; no cleavage; slightly deliquescent; easily soluble in RT H2O; densitymeas = 3.23(2) g cm–3; densitycalc = 3.313 g cm–3. Optically, biaxial (+), α = 1.527(1), β = 1.534(1), γ = 1.567(1) (white light); 2Vmeas. = 51(1)°, 2Vcalc. = 50°; dispersion r < v, distinct. Pleochroism: X, Y = colourless, Z = pale greenish yellow; X = Y < Z. Energy dispersive spectroscopic (EDS) analyses yielded the empirical formula Na3.88(U1.05O2)(S0.99O4)3(H2O)3. Fermiite is orthorhombic, Pmn21, a = 11.8407(12), b = 7.8695(5), c = 15.3255(19) Å, V = 1428.0(2) Å3 and Z = 4. The structure (R1 = 2.21% for 1951 Io > 3σI) contains [(UO2)(SO4)3] chains that are linked by bonds involving five different Na–O polyhedra to form a framework. The mineral is named for Italian-American theoretical and experimental physicist Dr. Enrico Fermi (1901–1954).

Oppenheimerite descriptive details: pale greenish-yellow prisms; transparent; vitreous lustre; bright greenish-white fluorescence; white streak; hardness (Mohs) 2½; slightly sectile; three good cleavages, {110}, {011} and {101}; irregular fracture; slightly deliquescent; easily soluble in RT H2O; densitycalc = 3.360 g cm–3. Optically, biaxial (+), α = 1.537(1), β = 1.555(1), γ = 1.594(1) (white light); 2Vmeas. = 72(2)°, 2Vcalc. = 70°; dispersion is r > v, moderate, inclined; optical orientation: X ≈ ⊥ {101}, Z ≈ [111]; pleochroism: X very pale greenish yellow, Y pale greenish yellow, Z greenish yellow; X < Y < Z. EDS analyses yielded the empirical formula Na1.94(U0.97O2)(S1.02O4)2(H2O)3. Oppenheimerite is triclinic, P1, a = 7.9576(6), b = 8.1952(6), c = 9.8051(7) Å, α = 65.967(5), β = 70.281(5), γ = 84.516(6)°, V = 549.10(8) Å3 and Z = 2. The structure (R1 = 3.07% for 2337 Io > 3σI) contains [(UO2)(SO4)2(H2O)] chains that are linked by bonds involving two different Na–O polyhedra to form a framework. The mineral is named for American theoretical physicist Dr. J. Robert Oppenheimer (1904–1967).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartlett, J.R. and Cooney, R.P. (1989) On the determin-ation of uranium-oxygen bond lengths in dioxour-anium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters from a systematic analysis of the inorganic crystal structure database. Ada Crystallographica, B41, 244247.Google Scholar
Burla, M.C., Caliandro, R., Camalli, M, Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C, Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Burns, EC, Ewing, R.C. and Hawthorne, EC. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Chenoweth, W.L. (1993) The geology and production history of the uranium deposits in the White Canyon mining district, San Juan County, Utah. Miscellaneous Publication 93-3, Utah Geological Survey, Salt Lake City, Utah, USA.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Plasil, I, Kasatkin, A.V and Marty, J. (2014) Belakovskiite, Na7(UO2)(SO4)4(SO3OH) (H2O)3, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 78, 639649.CrossRefGoogle Scholar
Kampf, A.R., Kasatkin, A.Y, Cejka, J. and Marty, J. (2015a) Plasilite, Na(UO2)(SO4)(OH)-2H2O, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 60, 110.CrossRefGoogle Scholar
Kampf, A.R., Plasil, J., Kasatkin, A.Y and Marty, J. (20156) Bobcookite, NaAl(UO2)2(SO4)4-18H2O and wetherillite, Na2Mg(UO2)2(SO4)4-18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.CrossRefGoogle Scholar
Kasatkin, A.Y, Nestola, E, Plasil, J., Marty, J., Belakovskiy, D.I., Agakhanov, A.A., Mills, S.J., Pedron, D., Lanza, A., Favaro, M., Bianchin, S., Lykova, I.S., Golias, V. and Birch, W.D. (2013) Manganoblodite, Na2Mn(SO4)2-4H2O, and cobaltoblodite, Na2Co(SO4)2-4H2O: two new members of the blodite group from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 11, 367383.CrossRefGoogle Scholar
Krivovichev, S.Y (2010) Actinyl compounds with hexavalent elements (S, Cr, Se, Mo)—structural diversity, nano scale chemistry, and cellular automata modeling. European Journal of Inorganic Chemistry, 2010, 25942603.CrossRefGoogle Scholar
Krivovichev, S.Y (2013) Crystal chemistry of uranium oxides and minerals. Pp. 611640 in: Comprehensive Inorganic Chemistry II, Vol 2 (J. Reedijk and K. Poeppelmeier, editors). Elsevier, Oxford.CrossRefGoogle Scholar
Krivovichev, S.Y and Burns, PC. (2003) Crystal chemistry of uranyl molybdates. VIII. Crystal structures of Na3Tl3[(UO2)(MoO4)4], Na13_xTl3+x[(UO2) (MoO4)3]4(H2O)6+x (x = 0.1), Na3Tl5[(UO2) (MoO4)3]2(H2O)3 and Na2[(UO2)(MoO4)2](H2O)4 . The Canadian Mineralogist, 41, 707719.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H-0 hydrogen bond lengths in minerals. Monatshefte fur Chemie, 130, 10471059.CrossRefGoogle Scholar
Ling, J., Sigmon, G.E., Ward, M., Roback, N. and Burns, PC. (2010) Syntheses, structures, and IR spectro-scopic characterization of new uranyl sulfate/selenate ID-chain, 2D-sheet and 3D framework. Zeitschrififur Kristallographie, 225, 230239.Google Scholar
Mandarino, J.A. (1976) The Gladstone-Dale relationship-Part 1: derivation of new constants. The Canadian Mineralogist, 14, 498502.Google Scholar
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Palatinus, L. (2013) The charge flipping algorithm in crystallography. Ada Crystallographica, B69, 116.Google Scholar
Palatinus, L. and Chapuis, G. (2007) Superfiip-A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Palatinus, L. and van der Lee, A. (2008) Symmetry determination following structure solution in PI. Journal of Applied Crystallography, 41, 975984.CrossRefGoogle Scholar
Petricek, Y, Dusek, M. and Palatinus, L. (2006) Jana2006. The Crystallographic Computing System. Institute of Physics, Prague.Google Scholar
Petricek, Y, Dusek, M. and Palatinus, L. (2014) Crystallographic computing system Jana 2006: general features. Zeitschrifi fur Kristallographie, 229, 345352.Google Scholar
Plasil, J. (2014) Oxidation—hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59, 99114.CrossRefGoogle Scholar
Plasil, J., Buixaderas, E., Cejka, J., Sejkora, J., Jehlicka, J. and Novak, M. (2010) Raman spectroscopic study of the uranyl sulphate mineral zippeite: low wavenumber and U—O stretching regions. Analytical and Bioanalytical Chemistry, 397, 27032715.CrossRefGoogle ScholarPubMed
Plasil, J., Kampf, A.R., Kasatkin, A.Y, Marty, J., Skoda, R., Silva, S. and Cejka, J. (2013) Meisserite, Na5(UO2)(SO4)3(SO3OH)(H2O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 11, 29752988.CrossRefGoogle Scholar
Plasil, J., Kampf, A.R., Kasatkin, A.Y and Marty, J. (2014) Bluelizardite, Na7(UO2)(SO4)4Cl(H2O)2, a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA. Journal of Geosciences, 59, 145158.CrossRefGoogle Scholar
Tabachenko, YY, Serezhkin, VI., Serezhkina, L.B. and Kovba, L.M. (1979) Crystal structure of manganese sulfatouranylate MnUO2(SO4)2(H2O)5. Koordinatsionnaya Khimiya, 5, 15631568.Google Scholar
Volkovich, VA., Griffiths, T.R., Fray, D.J. and Fields, M. (1998) Vibrational spectra of alkali metal Li, Na and K uranates and consequent assignment of uranate ion site symmetry. Vibrational Spectroscopy, 17, 8391.CrossRefGoogle Scholar
Wood, R.M. and Palenik, G.J. (1999) Bond valence sums in coordination chemistry. Sodium-oxygen complexes. Inorganic Chemistry, 38, 39263930.Google Scholar