Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T07:47:03.045Z Has data issue: false hasContentIssue false

Pituitary volume and clinical trajectory in young relatives at risk for schizophrenia

Published online by Cambridge University Press:  07 July 2015

J. L. Shah
Affiliation:
Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA Prevention and Early Intervention Program for Psychosis (PEPP-Montréal), Douglas Hospital Research Center and Department of Psychiatry, McGill University, Montréal, QC, Canada
N. Tandon
Affiliation:
Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Boston, MA, USA
E. R. Howard
Affiliation:
Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Boston, MA, USA
D. Mermon
Affiliation:
Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
J. M. Miewald
Affiliation:
Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
D. M. Montrose
Affiliation:
Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
M. S. Keshavan*
Affiliation:
Massachusetts Mental Health Center and Beth Israel Deaconess Medical Center, Boston, MA, USA Department of Psychiatry, Harvard Medical School, Boston, MA, USA Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
*
*Address for correspondence: Dr M. S. Keshavan, Massachusetts Mental Health Center, Room 610, 75 Fenwood Road, Boston, MA 02115, USA (Email: mkeshava@bidmc.harvard.edu)

Abstract

Background

Stress and vulnerability likely interact to play a major role in psychosis. While much has been written about the neural diathesis-stress model in psychosis and its clinical risk states, little is known about HPA axis biomarkers in non-help-seeking individuals at familial high risk (FHR). We sought to prospectively measure pituitary volume (PV) in adolescents and young adults at FHR for schizophrenia and to follow their emerging sub-clinical psychotic symptoms and clinical trajectories.

Method

Forty healthy controls and 38 relatives of patients with schizophrenia or schizoaffective disorder were identified in Pittsburgh, USA. PV was derived from baseline 1.5 T magnetic resonance imaging. Chapman's schizotypy scales were acquired at baseline, and structured clinical interviews for DSM-IV-TR Axis I diagnoses were attempted annually for up to 3 years.

Results

Seven individuals converted to psychosis. PV did not differ between FHR and control groups overall. Within the FHR group, PV was positively correlated with Chapman's positive schizotypy (Magical Ideation and Perceptual Aberration) scores, and there was a significant group × PV interaction with schizotypy. PV was significantly higher in FHR subjects carrying any baseline Axis I diagnosis (p = 0.004), and higher still in individuals who went on to convert to psychosis (p = 0.0007).

Conclusions

Increased PV is a correlate of early positive schizotypy, and may predict trait vulnerability to subsequent psychosis in FHR relatives. These preliminary findings support a model of stress-vulnerability and HPA axis activation in the early phases of psychosis.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addington, J, Heinssen, R (2012). Prediction and prevention of psychosis in youth at clinical high risk. Annual Review of Clinical Psychology 8, 269289.CrossRefGoogle ScholarPubMed
Addington, J, Stowkowy, J, Cadenhead, KS, Cornblatt, BA, McGlashan, TH, Perkins, DO, Seidman, LJ, Tsuang, MT, Walker, EF, Woods, SW, Cannon, TD (2013). Early traumatic experiences in those at clinical high risk for psychosis. Early Intervention in Psychiatry 7, 300305.CrossRefGoogle ScholarPubMed
Ambrosini, PJ, Metz, C, Prabucki, K, Lee, JC (1989). Videotape reliability of the third revised edition of the K-SADS. Journal of the American Academy of Child and Adolescent Psychiatry 28, 723728.CrossRefGoogle ScholarPubMed
Axelson, DA, Doraiswamy, PM, Boyko, OB, Rodrigo Escalona, P, McDonald, WM, Ritchie, JC, Patterson, LJ, Ellinwood, EH, Nemeroff, CB, Krishnan, KR (1992). In vivo assessment of pituitary volume with magnetic resonance imaging and systematic stereology: relationship to dexamethasone suppression test results in patients. Psychiatry Research 44, 6370.CrossRefGoogle ScholarPubMed
Bardeleben von, U, Holsboer, F (1988). Human corticotropin releasing hormone: clinical studies in patients with affective disorders, alcoholism, panic disorder and in normal controls. Progress in Neuro-Psychopharmacology & Biological Psychiatry 12 (Suppl.), S165S187.CrossRefGoogle Scholar
Bechdolf, A, Thompson, A, Nelson, B, Cotton, S, Simmons, MB, Amminger, GP, Leicester, S, Francey, SM, McNab, C, Krstev, H, Sidis, A, McGorry, PD, Yung, AR (2010). Experience of trauma and conversion to psychosis in an ultra-high-risk (prodromal) group. Acta Psychiatrica Scandinavica 121, 377384.CrossRefGoogle Scholar
Beresford, T, Arciniegas, D, Rojas, D, Sheeder, J, Teale, P, Aasal, R, Sandberg, E, Reite, M (1999). Hippocampal to pituitary volume ratio: a specific measure of reciprocal neuroendocrine alterations in alcohol dependence. Journal of Studies on Alcohol 60, 586588.CrossRefGoogle ScholarPubMed
Bhojraj, TS, Francis, AN, Montrose, DM, Keshavan, MS (2011). Grey matter and cognitive deficits in young relatives of schizophrenia patients. Neuroimage 54 (Suppl. 1), S287S292.CrossRefGoogle ScholarPubMed
Borges, S, Gayer-Anderson, C, Mondelli, V (2013). A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology 38, 603611.CrossRefGoogle ScholarPubMed
Bradley, AJ, Dinan, TG (2010). Review: a systematic review of hypothalamic-pituitary-adrenal axis function in schizophrenia: implications for mortality. Journal of Psychopharmacology 24, 91118.CrossRefGoogle ScholarPubMed
Bramon, E, Murray, RM (2001). A plausible model of schizophrenia must incorporate psychological and social, as well as neuro developmental, risk factors. Dialogues in Clinical Neuroscience 3, 243256.CrossRefGoogle ScholarPubMed
Brunelin, J, d'Amato, T, van Os, J, Cochet, A, Suaud Chagny, M-F, Saoud, M (2008). Effects of acute metabolic stress on the dopaminergic and pituitary-adrenal axis activity in patients with schizophrenia, their unaffected siblings and controls. Schizophrenia Research 100, 206211.CrossRefGoogle ScholarPubMed
Büschlen, J, Berger, GE, Borgwardt, SJ, Aston, J, Gschwandtner, U, Pflueger, MO, Kuster, P, Radü, EW, Stieglitz, R-D, Riecher-Rössler, A (2011). Pituitary volume increase during emerging psychosis. Schizophrenia Research 125, 4148.CrossRefGoogle ScholarPubMed
Carrión, RE, McLaughlin, D, Goldberg, TE, Auther, AM, Olsen, RH, Olvet, DM, Correll, CU, Cornblatt, BA (2013). Prediction of functional outcome in individuals at clinical high risk for psychosis. JAMA Psychiatry 70, 11331142.CrossRefGoogle ScholarPubMed
Chapman, LJ, Chapman, JP, Raulin, ML (1978). Body-image aberration in Schizophrenia. Journal of Abnormal Psychology 87, 399407.CrossRefGoogle ScholarPubMed
Contreras, F, Menchon, JM, Urretavizcaya, M, Navarro, MA, Vallejo, J, Parker, G (2007). Hormonal differences between psychotic and non-psychotic melancholic depression. Journal of Affective Disorders 100, 6573.CrossRefGoogle ScholarPubMed
Diwadkar, VA, Montrose, DM, Dworakowski, D, Sweeney, JA, Keshavan, MS (2006). Genetically predisposed offspring with schizotypal features: an ultra high-risk group for schizophrenia? Progress in Neuro-Psychopharmacology & Biological Psychiatry 30, 230238.CrossRefGoogle Scholar
Dubovsky, AN, Arvikar, S, Stern, TA, Axelrod, L (2012). The neuropsychiatric complications of glucocorticoid use: steroid psychosis revisited. Psychosomatics 53, 103115.CrossRefGoogle ScholarPubMed
Dvir, Y, Denietolis, B, Frazier, JA (2013). Childhood trauma and psychosis. Child and Adolescent Psychiatric Clinics of North America 22, 629641.CrossRefGoogle ScholarPubMed
Eack, SM, Prasad, KMR, Montrose, DM, Goradia, DD, Dworakowski, D, Miewald, J, Keshavan, MS (2008). An integrated psychobiological predictive model of emergent psychopathology among young relatives at risk for schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry 32, 18731878.CrossRefGoogle ScholarPubMed
Eckblad, M, Chapman, LJ (1983). Magical ideation as an indicator of schizotypy. Journal of Consulting Clinical Psychology 51, 215225.CrossRefGoogle ScholarPubMed
Eckblad, M, Chapman, LJ, Chapman, JP, Mishlove, M (1982). The Revised Social Anhedonia Scale . Unpublished test. (Reported in Mishlove M, Chapman LJ, Journal of Abnormal Psychology 1985, 94, 384–396.)Google Scholar
First, M, Spitzer, R, Gibbon, M, Williams, J (2002). Structured Clinical Interview for DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. Biometric Research, New York State Psychiatric Institute: New York.Google Scholar
Garner, B, Berger, GE, Nicolo, JP, Mackinnon, A, Wood, SJ, Pariante, CM, Dazzan, P, Proffitt, TM, Markulev, C, Kerr, M, McConchie, M, Phillips, LJ, Pantelis, C, McGorry, PD (2009). Pituitary volume and early treatment response in drug-naïve first-episode psychosis patients. Schizophrenia Research 113, 6571.CrossRefGoogle ScholarPubMed
Garner, B, Pariante, CM, Wood, SJ, Velakoulis, D, Phillips, L, Soulsby, B, Brewer, WJ, Smith, DJ, Dazzan, P, Berger, GE, Yung, AR, van den Buuse, M, Murray, R, McGorry, PD, Pantelis, C (2005). Pituitary volume predicts future transition to psychosis in individuals at ultra-high risk of developing psychosis. Biological Psychology 58, 417423.Google ScholarPubMed
Geuze, E, Vermetten, E, Bremner, JD (2005). MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Molecular Psychiatry 10, 160184.CrossRefGoogle ScholarPubMed
Gilbert, AR, Montrose, DM, Sahni, SD, Diwadkar, VA, Keshavan, MS (2003). Obstetric complications correlate with neurobehavioral and brain structural alterations in young relatives at risk for schizophrenia. Annals of the New York Academy of Sciences 1008, 269275.CrossRefGoogle ScholarPubMed
Gruner, P, Christian, C, Robinson, DG, Sevy, S, Gunduz-Bruce, H, Napolitano, B, Bilder, RM, Szeszko, PR (2012). Pituitary volume in first-episode schizophrenia. Psychiatry Research: Neuroimaging 203, 100102.CrossRefGoogle ScholarPubMed
Habets, P, Collip, D, Myin-Germeys, I, Gronenschild, E, van Bronswijk, S, Hofman, P, Lataster, T, Lardinois, M, Nicolson, NA, van Os, J, Marcelis, M (2011). Pituitary volume, stress reactivity and genetic risk for psychotic disorder. Psychological Medicine 42, 15231533.CrossRefGoogle ScholarPubMed
Kapur, S (2011). Looking for a ‘biological test’ to diagnose ‘schizophrenia’: are we chasing red herrings? World Psychiatry 10, 32.CrossRefGoogle Scholar
Keshavan, M, Montrose, DM, Rajarethinam, R, Diwadkar, V, Prasad, K, Sweeney, JA (2008). Psychopathology among offspring of parents with schizophrenia: relationship to premorbid impairments. Schizophrenia Research 103, 114120.CrossRefGoogle ScholarPubMed
Keshavan, MS, DeLisi, LE, Seidman, LJ (2011). Early and broadly defined psychosis risk mental states. Schizophrenia Research 126, 110.CrossRefGoogle ScholarPubMed
Keshavan, MS, Diwadkar, VA, Montrose, DM, Rajarethinam, R, Sweeney, JA (2005). Premorbid indicators and risk for schizophrenia: a selective review and update. Schizophrenia Research 79, 4557.CrossRefGoogle Scholar
Keshavan, MS, Diwadkar, VA, Montrose, DM, Stanley, JA, Pettegrew, JW (2004). Premorbid characterization in schizophrenia: the Pittsburgh High Risk Study. World Psychiatry 3, 163168.Google ScholarPubMed
Klomp, A, Koolschijn, PCMP, Hulshoff Pol, HE, Kahn, RS, Van Haren, NEM (2011). Hypothalamus and pituitary volume in schizophrenia: a structural MRI study. The International Journal of Neuropsychopharmacology 15, 281288.CrossRefGoogle ScholarPubMed
Konings, M, Bak, M, Hanssen, M, van Os, J, Krabbendam, L (2006). Validity and reliability of the CAPE: a self-report instrument for the measurement of psychotic experiences in the general population. Acta Psychiatrica Scandinavica 114, 5561.CrossRefGoogle Scholar
Krishnan, KR, Doraiswamy, PM, Lurie, SN, Figiel, GS, Husain, MM, Boyko, OB, Ellinwood, EH, Nemeroff, CB (1991). Pituitary size in depression. Journal of Clinical Endocrinology and Metabolism 72, 256259.CrossRefGoogle ScholarPubMed
Kwapil, TR, Barrantes-Vidal, N, Silvia, PJ (2008). The dimensional structure of the Wisconsin Schizotypy Scales: factor identification and construct validity. Schizophrenia Bulletin 34, 444457.CrossRefGoogle ScholarPubMed
MacMaster, FP, Kusumakar, V (2004). MRI study of the pituitary gland in adolescent depression. Journal of Psychiatric Research 38, 231236.CrossRefGoogle ScholarPubMed
MacMaster, FP, El-Sheikh, R, Upadhyaya, AR, Nutche, J, Rosenberg, DR, Keshavan, M (2007 a). Effect of antipsychotics on pituitary gland volume in treatment-naïve first-episode schizophrenia: a pilot study. Schizophrenia Research 92, 207210.CrossRefGoogle ScholarPubMed
MacMaster, FP, Keshavan, M, Mirza, Y, Carrey, N, Upadhyaya, AR, El-Sheikh, R, Buhagiar, CJ, Taormina, SP, Boyd, C, Lynch, M, Rose, M, Ivey, J, Moore, GJ, Rosenberg, DR (2007 b). Development and sexual dimorphism of the pituitary gland. Life Sciences 80, 940944.CrossRefGoogle ScholarPubMed
MacMaster, FP, Leslie, R, Rosenberg, DR, Kusumakar, V (2008). Pituitary gland volume in adolescent and young adult bipolar and unipolar depression. Bipolar Disorders 10, 101104.CrossRefGoogle Scholar
MacMaster, FP, Russell, A, Mirza, Y, Keshavan, MS, Banerjee, SP, Bhandari, R, Boyd, C, Lynch, M, Rose, M, Ivey, J, Moore, GJ, Rosenberg, DR (2006). Pituitary volume in pediatric obsessive-compulsive disorder. Biological Psychiatry 59, 252257.CrossRefGoogle ScholarPubMed
Mizrahi, R, Addington, J, Rusjan, PM, Suridjan, I, Ng, A, Boileau, I, Pruessner, JC, Remington, G, Houle, S, Wilson, AA (2012). Increased stress-induced dopamine release in psychosis. Biological Psychiatry 71, 561567.CrossRefGoogle ScholarPubMed
Mondelli, V, Dazzan, P, Gabilondo, A, Tournikioti, K, Walshe, M, Marshall, N, Schulze, KK, Murray, RM, McDonald, C, Pariante, CM (2008). Pituitary volume in unaffected relatives of patients with schizophrenia and bipolar disorder. Psychoneuroendocrinology 33, 10041012.CrossRefGoogle ScholarPubMed
Myin-Germeys, I, van Os, J (2007). Stress-reactivity in psychosis: evidence for an affective pathway to psychosis. Clinical Psychology Reviews 27, 409424.CrossRefGoogle ScholarPubMed
Myin-Germeys, I, van Os, J, Schwartz, JE, Stone, AA, Delespaul, PA (2001). Emotional reactivity to daily life stress in psychosis. Archives of General Psychiatry 58, 11371144.CrossRefGoogle ScholarPubMed
Nicolo, J-P, Berger, GE, Garner, BA, Velakoulis, D, Markulev, C, Kerr, M, McGorry, PD, Proffitt, T-M, McConchie, M, Pantelis, C, Wood, SJ (2010). The effect of atypical antipsychotics on pituitary gland volume in patients with first-episode psychosis: a longitudinal MRI study. Schizophrenia Research 116, 4954.CrossRefGoogle ScholarPubMed
Nordholm, D, Krogh, J, Mondelli, V, Dazzan, P, Pariante, C, Nordentoft, M (2013). Pituitary gland volume in patients with schizophrenia, subjects at ultra high-risk of developing psychosis and healthy controls: a systematic review and meta-analysis. Psychoneuroendocrinology 38, 23942404.CrossRefGoogle ScholarPubMed
Nuechterlein, K, Dawson, M (1984). A heuristic vulnerability/stress model of schizophrenic episodes. Schizophrenia Bulletin 10, 300312.CrossRefGoogle ScholarPubMed
Nussey, S, Whitehead, S (2001). The pituitary gland, chapter 7. In Endocrinology: An Integrated Approach. Oxford: BIOS Scientific Publishers (http://www.ncbi.nlm.nih.gov/books/NBK27/).Google ScholarPubMed
Palmier-Claus, JE, Dunn, G, Lewis, SW (2012). Emotional and symptomatic reactivity to stress in individuals at ultra-high risk of developing psychosis. Psychological Medicine 42, 10031012.CrossRefGoogle ScholarPubMed
Pariante, CM (2008). Pituitary volume in psychosis: the first review of the evidence. Journal of Psychopharmacology 22, 7681.CrossRefGoogle ScholarPubMed
Pariante, CM, Dazzan, P, Danese, A, Morgan, KD, Brudaglio, F, Morgan, C, Fearon, P, Orr, K, Hutchinson, G, Pantelis, C, Velakoulis, D, Jones, PB, LEFF, J, Murray, RM (2005). Increased pituitary volume in antipsychotic-free and antipsychotic-treated patients of the Æsop First-Onset Psychosis Study. Neuropsychopharmacology 30, 19231931.CrossRefGoogle ScholarPubMed
Pariante, CM, Vassilopoulou, K, Velakoulis, D, Phillips, L, Soulsby, B, Wood, SJ, Brewer, W, Smith, DJ, Dazzan, P, Yung, AR, Zervas, IM, Christodoulou, GN, Murray, R, McGorry, PD, Pantelis, C (2004). Pituitary volume in psychosis. British Journal of Psychiatry 185, 510.CrossRefGoogle ScholarPubMed
Ramanathan, S, Miewald, J, Montrose, D, Keshavan, MS (2015). Can age at sexual maturity act as a predictive biomarker for prodromal negative symptoms? Schizophrenia Research. Published online: 14 03 2015 . doi:10.1016-j.schres.2015.02.019.CrossRefGoogle ScholarPubMed
Romo-Nava, F, Hoogenboom, WS, Pelavin, PE, Alvarado, JL, Bobrow, LH, Macmaster, FP, Keshavan, M, McCarley, RW, Shenton, ME (2013). Pituitary volume in schizophrenia spectrum disorders. Schizophrenia Research 146, 301307.CrossRefGoogle ScholarPubMed
Sassi, RB, Nicoletti, M, Brambilla, P, Harenski, K, Mallinger, AG, Frank, E, Kupfer, DJ, Keshavan, MS, Soares, JC (2001). Decreased pituitary volume in patients with bipolar disorder. Biological Psychiatry 50, 271280.CrossRefGoogle ScholarPubMed
Shah, J, Eack, SM, Montrose, DM, Tandon, N, Miewald, JM, Prasad, KM, Keshavan, MS (2012). Multivariate prediction of emerging psychosis in adolescents at high risk for schizophrenia. Schizophrenia Research 141, 189196.CrossRefGoogle ScholarPubMed
Shah, JL, Malla, AK (2015). Much ado about much: stress, dynamic biomarkers and HPA axis dysregulation along the trajectory to psychosis. Schizophrenia Research 162, 253260.CrossRefGoogle ScholarPubMed
Shah, JL, Tandon, N, Keshavan, MS (2013). Psychosis prediction and clinical utility in familial high-risk studies: selective review, synthesis, and implications for early detection and intervention. Early Intervention in Psychiatry 7, 345360.CrossRefGoogle ScholarPubMed
Steen, RG, Mull, C, McClure, R, Hamer, RM, Lieberman, JA (2006). Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. British Journal of Psychiatry 188, 510518.CrossRefGoogle ScholarPubMed
Takahashi, T, Nakamura, K, Nishiyama, S, Furuichi, A, Ikeda, E, Kido, M, Nakamura, Y, Kawasaki, Y, Noguchi, K, Seto, H, Suzuki, M (2013). Increased pituitary volume in subjects at risk for psychosis and patients with first-episode schizophrenia. Psychiatry and Clinical Neurosciences 67, 540548.CrossRefGoogle ScholarPubMed
Takahashi, T, Suzuki, M, Velakoulis, D, Lorenzetti, V, Soulsby, B, Zhou, S-Y, Nakamura, K, Seto, H, Kurachi, M, Pantelis, C (2009). Increased pituitary volume in schizophrenia spectrum disorders. Schizophrenia Research 108, 114121.CrossRefGoogle ScholarPubMed
Tandon, N, Montrose, D, Shah, J, Rajarethinam, RP, Diwadkar, VA, Keshavan, MS (2012). Early prodromal symptoms can predict future psychosis in familial high-risk youth. Journal of Psychiatric Research 46, 105110.CrossRefGoogle ScholarPubMed
Tessner, KD, Mittal, V, Walker, EF (2011). Longitudinal study of stressful life events and daily stressors among adolescents at high risk for psychotic disorders. Schizophrenia Bulletin 37, 432441.CrossRefGoogle ScholarPubMed
Thomas, LA, De Bellis, MD (2004). Pituitary volumes in pediatric maltreatment-related posttraumatic stress disorder. Biological Psychiatry 55, 752758.CrossRefGoogle ScholarPubMed
Tournikioti, K, Tansella, M, Perlini, C, Rambaldelli, G, Cerini, R, Versace, A, Andreone, N, Dusi, N, Balestrieri, M, Malagò, R, Gasparini, A, Brambilla, P (2007). Normal pituitary volumes in chronic schizophrenia. Psychiatry Research: Neuroimaging 154, 4148.CrossRefGoogle ScholarPubMed
Upadhyaya, AR, El-Sheikh, R, MacMaster, FP, Diwadkar, VA, Keshavan, MS (2007). Pituitary volume in neuroleptic-naïve schizophrenia: a structural MRI study. Schizophrenia Research 90, 266273.CrossRefGoogle ScholarPubMed
van Os, J, Kenis, G, Rutten, BPF (2010). The environment and schizophrenia. Nature 468, 203212.CrossRefGoogle ScholarPubMed
Walker, E, Mittal, V, Tessner, K (2008). Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annual Review of Clinical Psychology 4, 189216.CrossRefGoogle ScholarPubMed
Walker, EF, Diforio, D (1997). Schizophrenia: a neural diathesis-stress model. Psychological Review 104, 667685.CrossRefGoogle ScholarPubMed
Walker, EF, Brennan, PA, Esterberg, M, Brasfield, J, Pearce, B, Compton, MT (2010). Longitudinal changes in cortisol secretion and conversion to psychosis in at-risk youth. Journal of Abnormal Psychology 119, 401408.CrossRefGoogle ScholarPubMed
Walker, EF, Sabuwalla, Z, Huot, R (2004). Pubertal neuromaturation, stress sensitivity, and psychopathology. Development and Psychopathology 16, 807824.CrossRefGoogle ScholarPubMed
Walker, EF, Trotman, HD, Pearce, BD, Addington, J, Cadenhead, KS, Cornblatt, BA, Heinssen, R, Mathalon, DH, Perkins, DO, Seidman, LJ, Tsuang, MT, Cannon, TD, McGlashan, TH, Woods, SW (2013). Cortisol levels and risk for psychosis: initial findings from the North American prodrome longitudinal study. Biological Psychiatry 74, 410417.CrossRefGoogle ScholarPubMed
Wand, GS, Oswald, LM, McCaul, ME, Wong, DF, Johnson, E, Zhou, Y, Kuwabara, H, Kumar, A (2007). Association of amphetamine-induced striatal dopamine release and cortisol responses to psychological stress. Neuropsychopharmacology 32, 23102320.CrossRefGoogle ScholarPubMed
Wicks, S, Hjern, A, Dalman, C (2010). Social risk or genetic liability for psychosis? A study of children born in Sweden and reared by adoptive parents. American Journal of Psychiatry 167, 12401246.CrossRefGoogle ScholarPubMed
Wiles, NJ, Zammit, S, Bebbington, P, Singleton, N, Meltzer, H, Lewis, G (2006). Self-reported psychotic symptoms in the general population: results from the longitudinal study of the British National Psychiatric Morbidity Survey. British Journal of Psychiatry 188, 519526.CrossRefGoogle ScholarPubMed
Wong, AP-Y, Pipitone, J, Park, MTM, Dickie, EW, Leonard, G, Perron, M, Pike, BG, Richer, L, Veillette, S, Chakravarty, MM, Pausova, Z, Paus, T (2014). Estimating volumes of the pituitary gland from T1-weighted magnetic-resonance images: effects of age, puberty, testosterone, and estradiol. Neuroimage 94, 216221.CrossRefGoogle Scholar
Zubin, J, Spring, B (1977). Vulnerability – a new view of schizophrenia. Journal of Abnormal Psychology 86, 103126.CrossRefGoogle ScholarPubMed