Hostname: page-component-cb9f654ff-qc88w Total loading time: 0 Render date: 2025-08-11T03:02:30.181Z Has data issue: false hasContentIssue false

The Percentage Bend Correlation Coefficient

Published online by Cambridge University Press:  01 January 2025

Rand R. Wilcox*
Affiliation:
University of Southern California
*
Requests for reprints should be sent to Rand R. Wilcox, Department of Psychology, University of Southern California, Los Angeles, CA 90089-1061.

Abstract

A well-known result is that the usual correlation coefficient, ρ, is highly nonrobust: very slight changes in only one of the marginal distributions can alter ρ by a substantial amount. There are a variety of methods for correcting this problem. This paper identifies one particular method which is useful in psychometrics and provides a simple test for independence. It is not recommended that the new test replace the usual test of H0: ρ = 0, but the new test has important advantages over the usual test in terms of both Type I errors and power.

Information

Type
Original Paper
Copyright
Copyright © 1994 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ammann, L. P. (1993). Robust singular value decompositions: A new approach to projection pursuit. Journal of the American Statistical Association, 88, 505514.CrossRefGoogle Scholar
Bickel, P. J., Lehmann, E. L. (1976). Descriptive statistics for nonparametric models III. Dispersion. Annals of Statistics, 4, 11391158.CrossRefGoogle Scholar
Blair, R. C., Lawson, S. B. (1982). Another look at the robustness of the product-moment correlation coefficient to population nonnormality. Florida Journal of Educational Research, 24, 1115.CrossRefGoogle Scholar
Davies, P. L. (1987). Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices. Annals of Statistics, 76, 12691292.Google Scholar
Devlin, S. J., Gnanadesikan, R., Kettenring, J. R. (1981). Robust estimation of dispersion matrices and principal components. Journal of the American Statistical Association, 76, 354362.CrossRefGoogle Scholar
Duncan, G. T., Layard, M. W. (1973). A monte-carlo study of asymptotically robust tests for correlation. Biometrika, 60, 551558.CrossRefGoogle Scholar
Edgell, S. E., Noon, S. M. (1984). Effect of violation of normality on the t test of the correlation coefficient. Psychological Bulletin, 95, 576583.CrossRefGoogle Scholar
Freedman, D. A., Diaconis, P. (1982). On inconsistent M-estimators. Annals of Statistics, 10, 454461.CrossRefGoogle Scholar
Gleason, J. R. (1993). Understanding elongation: The scale contaminated normal family. Journal of the American Statistical Association, 88, 327337.CrossRefGoogle Scholar
Golberg, K. M., Iglewicz, B. (1992). Bivariate extensions of the boxplot. Technometrics, 34, 307320.CrossRefGoogle Scholar
Hall, P., Martin, M. A., Schucany, W. R. (1989). Better nonparametric bootstrap confidence intervals for the correlation coefficient. Journal of Statistical Computation and Simulation, 33, 161172.CrossRefGoogle Scholar
Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., Stahel, W. A. (1986). Robust Statistics, New York: Wiley.Google Scholar
Hoaglin, D. C. (1985). Summarizing shape numerically: The g-and-h distributions. In Hoaglin, D., Mosteller, F., Tukey, J. (Eds.), Exploring data tables, trends and shapes, New York: Wiley.Google Scholar
Hoaglin, D. C., Mosteller, F., Tukey, J. W. (1983). Understanding robust and exploratory data analysis, New York: Wilkey.Google Scholar
Hogg, R. V. (1974). Adaptive robust procedures: A partial review and some suggestions for future applications and theory (with discussions). Journal of the American Statistical Association, 69, 909927.CrossRefGoogle Scholar
Huber, P. J. (1981). Robust statistics, New York: Wiley.CrossRefGoogle Scholar
Iglewicz, B. (1983). Robust scale estimators and confidence intervals for location. In Hoaglin, D., Mosteller, F., Tukey, J. (Eds.), Understanding robust and exploratory data analysis (pp. 404431). New York: Wiley.Google Scholar
Kafadar, K. (1982). Using biweight M-estimates in the two-sample problem Part I: Symmetric populations. Communications in Statistics—Theory and Methods, 11, 18831901.CrossRefGoogle Scholar
Kowalski, C. J. (1972). On the effects of nonnormality on the distribution of the sample product-moment correlation coefficient. Applied Statistics, 21, 112.CrossRefGoogle Scholar
Lax, D. A. (1985). Robust estimators of scale: Finite-sample performance in long-tailed symmetric distributions. Journal of the American Statistical Association, 80, 736741.CrossRefGoogle Scholar
Li, G., Chen, Z. (1985). Projection-pursuit approach to robust dispersion and principal components: Primary theory and Monte Carlo. Journal of the American Statistical Association, 80, 759766.CrossRefGoogle Scholar
Lupuhaä, H. P. (1989). On the relation between S-estimators and M-estimators of multivariate location and covariance. Annals of Statistics, 17, 16621683.Google Scholar
Marrona, R. (1976). Robust M-estimators of multivariate location and scatter. Annals of Statistics, 4, 5167.Google Scholar
Marrona, R., Morgenthaler, S. (1986). Robust regression through robust covariances. Communications in Statistics—Theory and Methods, 15, 13471365.CrossRefGoogle Scholar
Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156166.CrossRefGoogle Scholar
Mickey, M. R., Dunn, O. J., Clark, V. (1967). Note on the use of stepwise regression in detecting outliers. Computational Biomedical Research, 1, 105111.CrossRefGoogle ScholarPubMed
Mosteller, F., Tukey, J. W. (1977). Data analysis and regression, Reading, MA: Addison-Wesley.Google Scholar
Ramberg, J. S., Tadikamalla, P. R., Dudewicz, E. J., Mykytka, E. F. (1978). A probability distribution and its uses in fitting data. Technometrics, 21, 201214.CrossRefGoogle Scholar
Rasmussen, J. L. (1989). Computer-intensive correlational analysis: Bootstrap and approximate randomization techniques. British Journal of Mathematical and Statistical Psychology, 42, 103111.CrossRefGoogle Scholar
Rousseeuw, P. J., Leroy, A. M. (1987). Robust regression & outlier detection, New York: Wiley.CrossRefGoogle Scholar
Serfling, R. J. (1980). Approximation theorems of mathematical statistics, New York: Wiley.CrossRefGoogle Scholar
Shoemaker, L. H., Hettmansperger, T. P. (1982). Robust estimates and tests for the one- and two-sample scale models. Biometrika, 69, 4754.CrossRefGoogle Scholar
Srivastava, M. S., Awan, H. M. (1984). On the robustness of the correlation coefficient in sampling from a mixture of two bivariate normals. Communications in Statistics—Theory and Methods, 13, 371382.CrossRefGoogle Scholar
Staudte, R. G., Sheather, S. J. (1990). Robust estimation and testing, New York: Wiley.CrossRefGoogle Scholar
Tukey, J. W. et al. (1960). A survey of sampling from contaminated normal distributions. In Olkin, I. et al. (Eds.), Contributions to probability and statistics, Stanford, CA: Stanford University Press.Google Scholar
Wainer, H., Thissen, D. (1976). Three steps toward robust regression. Psychometrika, 41, 934.CrossRefGoogle Scholar
Wilcox, R. R. (1990). Comparing the means of two independent groups. Biometrical Journal, 32, 771780.CrossRefGoogle Scholar
Wilcox, R. R. (1991). Bootstrap inferences about the correlation and variances of paired data. British Journal of Mathematical and Statistical Psychology, 44, 379382.CrossRefGoogle Scholar
Wilcox, R. R. (1992). Comparing one-step M-estimators of location corresponding to two independent groups. Psychometrika, 57, 141154.CrossRefGoogle Scholar
Wilcox, R. R. (1992). Robust generalizations of classical test reliability and Cronbach's alpha. British Journal of Mathematical and Statistical Psychology, 45, 239254.CrossRefGoogle Scholar
Wilcox, R. R. (in press). Some results on a Winsorized correlation coefficient. British Journal of Mathematical and Statistical Psychology.Google Scholar