Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-20T02:07:45.231Z Has data issue: false hasContentIssue false

Late Proterozoic–Early Phanerozoic ‘Taphonomic Windows’: The Environmental and Temporal Distribution of Recurrent Modes of Exceptional Preservation

Published online by Cambridge University Press:  21 July 2017

Patrick J. Orr*
Affiliation:
UCD School of Geological Sciences, University College Dublin, Dublin 4, Ireland
Get access

Abstract

Exceptional biotas—those in which the non-biomineralized tissues of organisms are preserved—are an important record of the evolutionary biology of the late Neoproterozoic—early Phanerozoic interval. Most of these biotas exhibit one of four modes of preservation: preservation of either 1) internal and external detail (Doushantuo-type preservation) or, 2) external cuticles (Orsten-type preservation) in calcium phosphate; 3) coating in pyrite films and infills (Beecher's Bed-type preservation); and 4) preservation of organic remains (Burgess Shale-type preservation). The global environmental and temporal distribution of each mode of preservation is reasonably well constrained, but not why these taphonomic windows existed when they did. The late Neoproterozoic – early Phanerozoic interval is characterized by complex, interlinked, physical, geochemical and biological changes to the Earth's biosphere and geosphere. The changing ecology of marine environments (from matground to mixgrounds: the ‘Agronomic Revolution’) occurred via an intermediate phase of stiffened, but not microbially bound sediments that extended the interval over which exceptional preservation occurred. Prolonged eustatic sea-level rise across flat-lying continental platforms ensured environments conducive to exceptional preservation were developed and, critically, sustained over large contiguous areas. During this, regolith on continental surfaces was recycled, providing an integral source of sediment and ions relevant to mineral authigenesis. Superimposed on these broad-scale changes are specific drivers that controlled the duration of individual taphonomic windows; elucidating these requires a better understanding of the environmental context and diagenetic history of fossiliferous successions at the intra-basinal scale.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T. J., and Twitchett, R. J. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology, 38:10231026. doi: 10.1130/G31203.1 CrossRefGoogle Scholar
Allison, P. A., and Bottjer, D. J. 2011. Taphonomy: bias and process through time, p. 117. In Allison, P. A. and Bottjer, D. J. (eds.), Taphonomy: Process and Bias Through Time. Topics in Geobiology 32, Springer. doi: 10.1007/978-90-481-8643-3_1 CrossRefGoogle Scholar
Allison, P. A., and Briggs, D. E. G. 1991. Taphonomy of nonmineralized tissues, p. 2570. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum, New York.CrossRefGoogle Scholar
Andres, D. 1989. Phosphatisierte Fossilien aus dem unteren Ordoviz von Südschweden. Berliner Geowissenschaftliche Abhandlungen (A), 106:919.Google Scholar
Anderson, E., Schiffbauer, J. D., and Xiao, S. 2011. Taphonomic study of organic-walled microfossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology, 39:643646. doi: 10.1130/G31969.1 CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50:122. doi: 10.1111/j.1475-4983.2006.00611.x Google Scholar
Botting, J. P., Muir, L. A., Sutton, M. D., and Barnie, T. 2011. Welsh gold: A new exceptionally preserved pyritized Ordovician biota. Geology, 39:879882. doi: 10.1130/G32143.1 CrossRefGoogle Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10:18.Google Scholar
Brasier, M. D., Antcliffe, J. B., and Callow, R. H. T. 2011. Evolutionary trends in remarkable fossil preservation across the Ediacaran–Cambrian transition and the impact of metazoan mixing, p. 519567. In Allison, P. A. and Bottjer, D. J. (eds.), Taphonomy: Process and Bias Through Time: Topics in Geobiology 32, Springer. doi: 10.1007/978-90-481-8643-3_15 Google Scholar
Briggs, D. E. G., and Summons, R. E. 2014. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. Bioessays, 36:482490. doi:10.1002/bies.201400010 CrossRefGoogle ScholarPubMed
Buatois, L. A., Gingras, M. K., MacEachern, J., Mángano, M. G., Zonneveld, J.-P., Pemberton, S. G., Netto, R. G., and Martin, A. 2005. Colonization of brackish-water systems through time: evidence from the trace-fossil record. PALAIOS, 20:321347. doi:10.2110/palo.2004.p04-32 CrossRefGoogle Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.CrossRefGoogle Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171. doi:10.1666/0094-8373 2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2012. Does cement-induced sulfate limitation account for Burgess Shale-type preservation? Proceedings of the National Academy of Sciences of the United States of America, 109:E1901. doi: 10.1073/pnas.1206878109 Google Scholar
Butterfield, N. J., Balthasar, U., and Wilson, L. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543. doi: 10.1111/j.1475-4983.2007.00656.x Google Scholar
Butterfield, N. J., and Harvey, T. H. P. 2012. Small carbonaceous fossils (SCFs): a new measure of early Paleozoic paleobiology. Geology, 40:7174. doi:10.1130/G32580.1 CrossRefGoogle Scholar
Cai, Y., Hua, H., Xiao, S., Schiffbauer, J. D., and Li, P. 2010. Biostratinomy of the Late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: importance of event deposits. PALAIOS, 25:487506. doi: 10.2110/palo.2009.p09-133r CrossRefGoogle Scholar
Cai, Y., Schiffbauer, J. D., Hua, H., and Xiao, S. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328:109117. doi:10.1016/j.palaeo.2012.02.009 CrossRefGoogle Scholar
Callow, R. H. T., and Brasier, M. D. 2009a. A solution to Darwin's Dilemma of 1859: exceptional preservation in Salter's material from the Ediacaran Longmyndian Supergroup, England. Journal of the Geological Society, 166:14. doi: 10.1144/0016-76492008–095 Google Scholar
Callow, R. H. T., and Brasier, M. D. 2009b. Remarkable preservation of microbial mats in Neoproterozoic siliciclastic settings: Implications for Ediacaran taphonomic models. Earth Science Reviews, 96:207219. doi:10.1016/j.earscirev.2009.07.002 Google Scholar
Canfield, D. E., and Farquhar, J. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences of the United States of America, 106:81238127. doi:10.1073/pnas.0902037106 CrossRefGoogle ScholarPubMed
Carbone, C., and Narbonne, G. M. 2014. When life got smart: The evolution of behavioral complexity through the Ediacaran and Early Cambrian of NW Canada. Journal of Paleontology, 88:309330. doi: 10.1666/13-066 CrossRefGoogle Scholar
Caron, J.-B., and Jackson, D. A. 2006. Taphonomy of the Greater Phyllopod Bed Community, Burgess Shale. PALAIOS, 21:451465. doi: 10.2110/palo.2003.P05-070R Google Scholar
Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G., and Streng, M. 2014. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nature Communications, 5:3210. doi: 10.1038/ncomms4210 Google Scholar
Caron, J.-B., Gaines, R. R., Mángano, M. G., Streng, M., and Daley, A. C. 2010. A new Burgess Shale-type assemblage from the “thin” Stephen Formation of the southern Canadian Rockies. Geology, 38:811814. doi: 10.1130/G31080.1 Google Scholar
Chen, F., and Dong, X.-P. 2008. The internal structure of Early Cambrian fossil embryo Olivooides revealed in the light of synchrotron X-ray tomographic microscopy. Chinese Science Bulletin, 53:38603865. doi:10.1007/s11434-008-0452-9 CrossRefGoogle Scholar
Chen, J-Y., Schopf, J. W., Bottjer, D. J., Zhang, C.-Y., Kudryavtsev, A. B., Tripathi, A. B., Wang, X.-Q., Yang, Y.-H., Gao, X., and Yang, Y. 2007. Raman spectra of a Lower Cambrian ctenophore embryo from southwestern Shaanxi, China. Proceedings of the National Academy of Sciences of the United States of America, 104:62896292. doi:10.1073/pnas.0701246104 Google Scholar
Colette, J. H., and Hagadorn, J. W. 2010. Three-dimensionally preserved arthropods from Cambrian Lagerstätten of Quebec and Wisconsin. Journal of Paleontology, 84:646667. doi: 10.1666/09-075.1 CrossRefGoogle Scholar
Conway Morris, S. 2008. A redescription of a rare chordate, Metaspriggina walcotti Simonetta and Insom, from the Burgess Shale (Middle Cambrian), British Columbia, Canada. Journal of Paleontology, 82:424430. doi:10.1666/06-130.1 CrossRefGoogle Scholar
Creveling, J. R., Johnston, D. T., Poulton, S. W., Kotrc, B., März, C., Schrag, D. P., and Knoll, A. H. 2014. Phosphorus sources for phosphatic Cambrian carbonates. Geological Society of America Bulletin, 126:145163. doi:10.1130/B30819.1 CrossRefGoogle Scholar
Cunningham, J. A., Donoghue, P. C. J., and Bengtson, S. 2014. Distinguishing biology from geology in soft-tissue preservation, p. 275287. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Darroch, S. A. F., Laflamme, M., Schiffbauer, J. D., and Briggs, D. E. G. 2012. Experimental formation of a microbial death mask. PALAIOS, 27:293303. doi:10.2110/palo.2011.p11-059r Google Scholar
Davies, N. S., and Gibling, M. R. 2010. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Science Reviews, 98:171200. doi:10.1016/j.earscirev.2009.11.002 CrossRefGoogle Scholar
Davies, N. S., Gibling, M. R., and Rygel, M. C. 2011. Alluvial facies evolution during the Palaeozoic greening of the continents: case studies, conceptual models and modern analogues. Sedimentology, 58:220258. doi: 10.1111/j.1365-3091.2010.01215.x Google Scholar
Dong, X.-P., Cunningham, J. A., Bengtson, S., Thomas, C.-W., Liu, J.-B., Stampanoni, M., and Donoghue, P. C. J. 2013. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides . Proceedings of the Royal Society of London B-Biological Sciences, 280:20130071. doi:10.1098/rspb.2013.0071 Google Scholar
Dong, X.P., Donoghue, P. C. J., Cheng, H., and Liu, J. B. 2004. Fossil embryos from the Middle and Late Cambrian period of Hunan, South China. Nature, 427:237240. doi:10.1038/nature02215 Google Scholar
Dong, X. P., Donoghue, P. C. J., Liu, Z., Liu, J., and Peng, F. 2005. The fossils of Orsten-type preservation from Middle and Upper Cambrian in Hunan, China—three-dimensionally preserved soft-bodied fossils (Arthropods). Chinese Science Bulletin, 50:13521357. doi:10.1360/982005-795.Google Scholar
Donoghue, P. C. J., Kouchinsky, A., Waloszek, D., Bengtson, S., Val'kov, A. K., Cunningham, J., Dong, X.-P., and Repetski, J. E. 2006. Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evolution & Development, 8:232238. doi:10.1111/j.1525-142X.2006.00093.x CrossRefGoogle ScholarPubMed
Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., Gao, F., Oliveri, P., and Li, C. W. 2006. Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southwest China. PALAIOS, 21:314. doi:10.2110/palo.2004.p04-37 CrossRefGoogle Scholar
Drever, J. I. 1994. The effect of land plants on weathering rates of silicate minerals. Geochimica et Cosmochimica Acta, 58:23252332. doi:10.1016/0016-7037(94)90013-2 Google Scholar
Driese, S. G., Medaris, L. G. Jr., Ren, M., Runkel, A. C., and Langford, R. P. 2007. Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. Journal of Geology, 115:387406. doi:10.1086/518048 CrossRefGoogle Scholar
Droser, M. L., Jensen, S., and Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proceedings of the National Academy of Sciences of the United States of America, 99:1257212576. doi:10.1073/pnas.202322499 Google Scholar
Eriksson, M. E., Terfelt, F., Elofsson, R., and Marone, F. 2012. Internal soft-tissue anatomy of Cambrian ‘Orsten’ arthropods as revealed by synchrotron X-ray tomographic microscopy. PLoS ONE, 7:e42582. doi:10.1371/journal.pone.0042582 Google Scholar
Farrell, Ú. C. 2014. Pyritization of soft tissues in the fossil record: an overview, p. 3557. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Farrell, Ú. C., Briggs, D. E. G., Hammarlund, E. U., Sperling, E. A., and Gaines, R. R. 2013. Paleoredox and pyritization of soft-bodied fossils in the Ordovician Frankfort Shale of New York. American Journal of Science, 313:452489. doi: 10.2475/05.2013.02 CrossRefGoogle Scholar
Gabbott, S. E., Xian-Guang, H., Norry, M. J., and Siveter, D. J. 2004. Preservation of Early Cambrian animals of the Chengjiang biota. Geology, 32:901904. doi:10.1130/G20640.1 Google Scholar
Gaines, R. R. 2014. Burgess Shale-type preservation and its distribution in space and time, p. 123146. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Gaines, R. R., Briggs, D. E. G., and Zhao, Y.-L. 2008. Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758. doi: 10.1130/G24961A.1 CrossRefGoogle Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E. 2012. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America, 109:51805184. doi:10.1073/pnas.1111784109 Google Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. PALAIOS, 14:4057, doi:10.2307/3515360.Google Scholar
Gehling, J. G., and Droser, M. L. 2009. Textured organic surfaces associated with the Ediacara biota in South Australia. Earth-Science Reviews, 96:196206. doi:10.1016/j.earscirev.2009.03.002.CrossRefGoogle Scholar
Gehling, J. G., and Droser, M. L. 2013. How well do fossil assemblages of the Ediacara biota tell time? Geology, 41:447450. doi:10.1130/G33881.1 Google Scholar
Gehling, J. G., Runnegar, B. N., and Droser, M. L. 2014. Scratch traces of large Ediacara bilaterian animals. Journal of Paleontology, 88:284298. doi:10.1666/13–054 Google Scholar
Getty, P. R., and Hagadorn, J. W. 2008. Reinterpretation of Climactichnites Logan 1860 to include subsurface burrows, and erection of Musculopodus for resting traces of the trailmaker. Journal of Paleontology, 82:11611172. doi: 10.1666/08-004.1 Google Scholar
Gibling, M. R., and Davies, N. S. 2011. Palaeozoic landscapes shaped by plant evolution. Nature Geoscience, 5:99105. doi:10.1038/ngeo1376 Google Scholar
Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H., and Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469:8083. doi: 10.1038/nature09700 Google Scholar
Grazhdankin, D. V., Balthasar, U., Nagovitsin, K. E., and Kochnev, B. B. 2008. Carbonate-hosted Avalon-type fossils in arctic Siberia. Geology, 36:803806, doi:10.1130/G24946A.1 CrossRefGoogle Scholar
Hagadorn, J. W. 2011. Burgess Shale-type localities: the global picture, p. 91116. In Bottjer, D. J., Etter, W., Hagadorn, J. W., and Tang, C. M. (eds.), Exceptional Fossil Preservation. Columbia University Press, New York.Google Scholar
Hagadorn, J. W., and Belt, E. S. 2008. Stranded in upstate New York: Cambrian medusae from the Potsdam Sandstone. PALAIOS, 23:424441. doi: 10.2110/palo.2006.p06-104r Google Scholar
Hagadorn, J. W., and Bottjer, D. J. 1999. Restriction of a late Neoproterozoic biotope; suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. PALAIOS, 14:7385 doi:10.2307/3515362 CrossRefGoogle Scholar
Hagadorn, J. W., Dott, R. H., and Damrow, D. 2002. Stranded on an upper Cambrian shoreline: Medusae from central Wisconsin. Geology, 30:147150. doi:10.1130/0091-7613(2002)030 <0147:SOALCS>2.0.CO;2 Google Scholar
Hagadorn, J. W., and Miller, R. F. 2011. Hypothesized Cambrian medusae from Saint John, New Brunswick, reinterpreted as sedimentary structures. Atlantic Geology, 47:6680. doi: 10.4138/atlgeol.2011.002 Google Scholar
Hagadorn, J. W., Dott, R. H., and Damrow, D. 2002. Stranded on an upper Cambrian shoreline: Medusae from central Wisconsin. Geology, 30:147150. doi:10.1130/0091-7613(2002)030 <0147:SOALCS>2.0.CO;2 Google Scholar
Halgedahl, S. L., Jarrard, R. D., Brett, C. E., and Allison, P. A. 2009. Geophysical and geological signatures of relative sea level change in the upper Wheeler Formation, Drum Mountains, West-Central Utah: A perspective into exceptional preservation of fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:3456. doi:10.1016/j.palaeo.2009.02.011 Google Scholar
Halverson, G. P., Hurtgen, M. T., Porter, S. M., and Collins, A. S. 2009. Neoproterozoic–Cambrian biogeochemical evolution, p. 351365. In Gaucher, C., Sial, A. N., Halverson, G. P., and Frimmel, H. E. (eds.), Neoproterozoic–Cambrian Tectonics, Global Change and Evolution: A Focus on Southwestern Gondwana. Developments in Precambrian Geology 16, Elsevier. doi: 10.1016/S0166-2635(09)01625-9 Google Scholar
Handle, K. C., and Powell, W. G. 2012. Morphologically simple enigmatic fossils from the Wheeler Formation: a comparison with definitive algal fossils. PALAIOS, 27:304316. doi: 10.2110/palo.2011.p11-068r Google Scholar
Haq, B. U., and Shutter, S. R. 2008. A chronology of Paleozoic sea-level changes. Science, 322:6468. doi: 10.1126/science.116164 Google Scholar
Harper, D. A. T. 2006. The Ordovician biodiversification: setting an agenda for marine life. Palaeogeography, Palaeoclimatology, Palaeoecology, 232:148166. doi:10.1016/j.palaeo.2005.07.010 Google Scholar
Harvey, T. H. P., Vélez, M. I., and Butterfield, N. J. 2012. Small carbonaceous fossils from the Earlie and Deadwood formations (middle Cambrian to lower Ordovician) of southern Saskatchewan, p. 18. In Summary of Investigations 2012, v. 1, Saskatchewan Geological Survey, Saskatchewan Ministry of the Economy, Miscellaneous Reports 2012-4.1.Google Scholar
Harvey, T. H. P., Williams, M., Condon, D. J., Wilby, P. R., Siveter, D. J., Rushton, A. W. A., Leng, M. J., and Gabbott, S. E. 2011. A refined chronology for the Cambrian succession of southern Britain. Journal of the Geological Society, 168:705716. doi:10.1144/0016-76492010-031 Google Scholar
Haug, J. T., Castellani, C., Haug, C., Waloszek, D., and Maas, A. 2013. A Marrella-like arthropod from the Cambrian of Australia: a new link between “Orsten”-type and Burgess Shale assemblages. Acta Palaeontologica Polonica, 58:629639. doi:10.4202/app.2011.0120 Google Scholar
Hou, X.-G., Stanley, G., Zhao, J., and Ma, X.-Y. 2005. Cambrian anemones with preserved soft tissue from the Chengjiang biota, China. Lethaia, 38:193203. doi:10.1080/00241160510013295 Google Scholar
Huldtgren, T., Cunningham, J. A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengtson, S. 2011. Fossilized nuclei and germination etructures identify Ediacaran “animal embryos” as encysting protists. Science, 334:16961699. doi:10.1126/science.1209537 CrossRefGoogle ScholarPubMed
Jensen, S., Droser, M. L., and Gehling, J. G. 2005. Trace fossil preservation and the early evolution of animals. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:1929. doi:10.1016/j.palaeo.2003.09.035 CrossRefGoogle Scholar
Jiang, G., Shi, X., Zhang, S., Wang, Y., and Xiao, S. 2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 19:831849. doi:10.1016/j.gr.2011.01.006 Google Scholar
Kenchington, C. G., and Wilby, P. R. 2014. Of time and taphonomy: preservation in the Ediacaran, p. 101121. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Kenrick, P., Wellman, C. H., Schneider, H., and Edgecombe, G. D. 2012. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philosophical Transactions of the Royal Society of London B-Biological Sciences, 367:519536. doi:10.1098/rstb.2011.0271 Google Scholar
Kluessendorf, J. 1994. Predictability of Silurian fossil Konservat-Lagerstätten in North America. Lethaia, 27:337344. doi:10.1111/j.1502-3931.1994.tb01584.x Google Scholar
Lacelle, M. A., Hagadorn, J. W., and Groulx, P. 2008. The widespread distribution of Cambrian medusae: scyphomedusa strandings in the Potsdam Group of southwestern Quebec. Geological Society of America Annual Meeting Abstracts with Programs, 40(6):369.Google Scholar
Laflamme, M., Darroch, S. A. F., Tweedt, S., Peterson, K. J., and Erwin, D. H. 2013. The end of the Ediacara biota: extinction, biotic replacement, or Cheshire Cat? Gondwana Research, 23:558573. doi:10.1016/j.gr.2012.11.004 Google Scholar
Le Hir, G., Donnadieu, Y., Goddéris, Y., Pierrehumbert, R. T., Halverson, G. P., Macouin, M., Nédélec, A., and Ramstein, G. 2009. The snowball Earth aftermath: exploring the limits of continental weathering processes. Earth and Planetary Science Letters, 277:453463. doi:10.1016/j.epsl.2008.11.010 Google Scholar
Liu, H. P., McKay, R. M., Young, J. N., Witzke, B. J., McVey, K. J., and Liu, X. 2006. A new Lagerstätte from the Middle Ordovician St. Peter Formation of northeast Iowa, USA. Geology, 34:969972. doi:10.1130/G22911A.1.Google Scholar
Lyons, T. 2012. A perfect (geochemical) storm yielded exceptional fossils in the early ocean. Proceedings of the National Academy of Sciences of the United States of America, 109:51385139. doi:10.1073/pnas.1202201109 Google Scholar
Maas, A. 2013. Gastrotricha, Cycloneuralia and Gnathifera: the fossil record. p. 1128. In Schmidt-Rhaesa, A. (ed.), Handbook of Zoology, Volume Gastrotricha, Cycloneuralia and Gnathifera, Vol. 1: Nematomorpha, Priapulida, Kinorhyncha, Loricifera. De Gruyter, Berlin. doi: 10.1515/9783110272536.1 Google Scholar
Maas, A., Braun, A., Dong, X.-P., Donoghue, P. C. J., Müller, K. J., Olempska, E., Repetski, J. E., Siveter, D. J., Stein, M., and Waloszek, D. 2006. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld, 15:266282. doi:10.1016/j.palwor.2006.10.005 Google Scholar
Maeda, H., Tanaka, G., Shimobayashi, N., Ohno, T., and Matsuoka, H. 2011. Cambrian Orsten Lagerstätte from the Alum Shale Formation: fecal pellets as a probable source of phosphorus preservation. PALAIOS, 26:225231. doi:10.2110/palo.2010.p10-042r.Google Scholar
Maloof, A. C., Porter, S. M., Moore, J. L., Dudas, F. Ö, Bowring, S. A., Higgins, J. A., Fike, D. A., and Eddy, M. P. 2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin, 122:1731–74. doi:10.1130/B30346.1 Google Scholar
Marshall, A. O., Wehrbein, R. L., Lieberman, B. S., and Marshall, C. P. 2012. Raman spectroscopic investigations of Burgess Shale-type preservation: a new way forward. PALAIOS, 27:288292. doi:10.2110/palo.2011.p11-041r CrossRefGoogle Scholar
Mata, S. A., and Bottjer, D. J. 2009. The paleoenvironmental distribution of Phanerozoic wrinkle structures. Earth-Science Reviews, 96:181195. doi:10.1016/j.earscirev.2009.06.001 CrossRefGoogle Scholar
McNamara, M., Orr, P. J., Kearns, S. L., Alcalà, L., Anadón, P., and Peñalver-Mollà, E. 2006. High-fidelity organic preservation of bone marrow in ca. 10 Ma amphibians. Geology, 34:641644. doi:10.1130/G22526.1 Google Scholar
McNamara, M., Orr, P. J., Kearns, S. L., Alcalà, L., Anadón, P., and Peñalver-Mollà, E. 2010. Organic preservation of fossil musculature with ultracellular detail. Proceedings of the Royal Society B-Biological Sciences, 277:423427. doi:10.1098/rspb.2009.1378 Google Scholar
Meyer, M., Schiffbauer, J. D., Xiao, S., Cai, Y., and Hua, H. 2012. Taphonomy of the late Ediacaran enigmatic ribbon-like fossil Shaanxilithes . PALAIOS, 27:354372. doi:10.2110/palo.2011.p11-098r Google Scholar
Miller, K. G., Kominz, M. A., Browning, J. V., Wright, J. D., Mountain, G. S., Katz, M. E., Sugarman, P. J., Cramer, B. S., Christie-Blick, N., and Pekar, S. F. 2005. The Phanerozoic record of global sea-level change. Science, 310:12931298. doi:10.1126/science.1116412 CrossRefGoogle ScholarPubMed
Mochizuki, T., Oji, T., Zhao, Y., Peng, J., Yang, X., and Gonchigdorj, S. 2014. Diachronous increase in Early Cambrian ichnofossil size and benthic faunal activity in different climatic regions. Journal of Paleontology, 88:331338. doi: 10.1666/13-056 Google Scholar
Munnecke, A., Calner, M., Harper, D. A. T., and Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeography, Palaeoclimatology, Palaeoecology, 296:389413. doi:10.1016/j.palaeo.2010.08.001 Google Scholar
Narbonne, G. M. 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442. doi:10.1146/annurev.earth.33.092203.122519 Google Scholar
Netto, R. G., and Martini da Rosa, C. I. 2001. A biota vendiana da sub-bacia de Santa Bárbara, Bacia do Camaquã. 17 Congresso Brasileiro de Paleontologia, Sociedade Brasileira de Paleontologia, Boletim de Resumos, Rio Branco, p. 94.Google Scholar
O'Brien, L. J., and Caron, J.-B. 2012. A new stalked filter-feeder from the Middle Cambrian Burgess Shale, British Columbia, Canada. PLoS ONE, 7:e29233. doi:10.1371/journal.pone.0029233 Google Scholar
Orr, P. J. 2001. Colonization of the deep-marine environment during the early Phanerozoic: the ichnofaunal record. Geological Journal, 36:265278. doi:10.1002/gj.891 Google Scholar
Orr, P. J., Benton, M. J., and Briggs, D. E. G. 2003. Post-Cambrian closure of the deep-water slope-basin taphonomic window. Geology, 31:769772. doi:10.1130/G19193.1 Google Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175. doi:10.1126/science.281.5380.117 CrossRefGoogle ScholarPubMed
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 2008. Taphonomy of exceptionally preserved crustaceans from the Upper Carboniferous of Southeastern Ireland. PALAIOS, 23:298312. doi: 10.2110/palo.2007.p07-015r Google Scholar
Orr, P. J., Briggs, D. E. G., Siveter, D. J., and Siveter, D. J. 2000. Three-dimensional preservation of a non-biomineralized arthropod in concretions in Silurian volcaniclastic rocks from Herefordshire, England. Journal of the Geological Society, 157:173186. doi:10.1144/jgs.157.1.173 Google Scholar
Page, A., Gabbott, S. E., Wilby, P. R., and Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology, 36:855858. doi:10.1130/G24991A.1 Google Scholar
Page, A., Wilby, P. R., Williams, M., Vannier, J., Davies, J. R., Waters, R. A., and Zalasiewicz, J. A. 2010. Soft-part preservation in a bivalved arthropod from the Late Ordovician of Wales. Geological Magazine, 147:242252. doi:10.1017/S0016756809990045 Google Scholar
Peters, S. E., and Gaines, R. R. 2012. Formation of the ‘Great Unconformity’ as a trigger for the Cambrian explosion. Nature, 484:363366. doi:10.1038/nature10969 CrossRefGoogle ScholarPubMed
Planavsky, N. J., Rouxel, O. J., Bekker, A., Lalonde, S. V., Konhauser, K. O., Reinhard, C. T., and Lyons, T. W. 2010. The evolution of the marine phosphate reservoir. Nature, 467:10881090. doi:10.1038/nature09485 Google Scholar
Porter, S. M. 2004. Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. PALAIOS, 19:178183. doi: 10.1669/0883-1351(2004)019<0178:CTPWTF>2.0.CO;2 Google Scholar
Ranganathan, V. 1983. The significance of abundant K-feldspar in potassium-rich Cambrian shales of the Appalachian basin. Southeastern Geology, 24:139146.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. PALAIOS, 14:8693. doi: 10.2307/3515363 Google Scholar
Schiffbauer, J. D., Wallace, A. F., Broce, J., and Xiao, S. 2014. Exceptional fossil conservation through phosphatization, p. 5982. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Schiffbauer, J. D., Xiao, S., Sen Sharma, K., and Wang, G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 40:223226.Google Scholar
Seilacher, A., and Pfluger, F. 1994. From biomats to benthic agriculture: a biohistorical revolution, p. 97105. In Krumbein, W. E., Paterson, D. M., and Stal, L. J. (eds.), Biostabilization of Sediments. Bibliotheks und Informationssystem der Carl von Ossietzky Universität, Oldenburg.Google Scholar
Seilacher, A., Reif, W. E., and Westphal, F. 1985. Sedimentological, ecological and temporal patterns of Fossil Lagerstätten. Proceedings of the Royal Society of London B-Biological Sciences, 311:523. doi:10.1098/rstb.1985.0134 Google Scholar
Sepkoski, J. J. 1982. Flat-pebble conglomerates, storm deposits, and the Cambrian bottom fauna, p. 371385. In Einsele, G. and Seilacher, A. (eds.), Cyclic and Event Stratification. Springer, Berlin.Google Scholar
Servais, T., Owen, A. W., Harper, D. A. T., Kroger, B., and Munnecke, A. 2010. The Great Ordovician Biodiversification Event (GOBE): the palaeoecological dimension. Palaeogeography, Palaeoclimatology, Palaeoecology, 294:99119. doi:10.1016/j.palaeo.2010.05.031 Google Scholar
Shen, C., Pratt, B. R., Lan, T., Hou, J.-B., Cen, L., Hao, B.-Q., and Zhang, X.-G. 2013. The search for Orsten-type fossils in southern China. Palaeoworld, 22:19. doi:10.1016/j.palwor.2013.04.001 Google Scholar
Siveter, D. J., Rushton, A. W. A., and Siveter, D. J. 1995. An ostracod-like arthropod with appendages preserved from the lower Ordovician of England. Lethaia, 28:299308. doi:10.1111/j.1502-3931.1995.tb01818.x Google Scholar
Smith, M. R. 2014. Ontogeny, morphology and taxonomy of the soft-bodied Cambrian ‘mollusc’ Wiwaxia . Palaeontology, 57:215229. doi:10.1111/pala.12063 Google Scholar
Steiner, M., Zhu, M., Zhao, Y., and Erdtmann, B.-D. 2005. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:129152. doi:10.1016/j.palaeo.2003.06.001 Google Scholar
Tarhan, L. G., and Droser, M. L. 2014. Widespread delayed mixing in early to middle Cambrian marine shelfal settings. Palaeogeography, Palaeoclimatology, Palaeoecology, 399:310322. doi:10.1016/j.palaeo.2014.01.024 Google Scholar
Teal, L. R., Parker, E. R., and Solan, M. 2010. Sediment mixed layer as a proxy for benthic ecosystem process and function. Marine Ecology Progress Series, 414:2740. doi: 10.3354/meps08736 Google Scholar
Van der Brugghen, W., Schram, F. R., and Martill, D. M. 1997. The fossil Ainiktozoon is an arthropod. Nature, 385:589590. doi:10.1038/385589a0 Google Scholar
van Roy, P. 2011. New insights from exceptionally preserved Ordovician biotas from Morocco, p. 2126. In Gutiérrez-Marco, J. C., Rábano, I., and García-Bellido, D. (eds.), Ordovician of the World. Cuadernos del Museo Geominero 14, Instituto Geológico y Minero de España, Madrid.Google Scholar
van Roy, P., Orr, P. J., Botting, J. P., Muir, L. A., Vinther, J., Lefebvre, B., El Hariri, K., and Briggs, D. E. G. 2010. Ordovician faunas of Burgess Shale type. Nature, 465:215218. doi:10.1038/nature09038 Google Scholar
von Bitter, P. H., Purnell, M. A., Tetrault, D. K., and Stott, C. A. 2007. Eramosa Lagerstätte—exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada). Geology, 35:879882. doi:10.1130/G23894A.1 Google Scholar
Vrazo, M. B., and Braddy, S. J. 2011. Testing the mass-moult-mate hypothesis of eurypterid palaeoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 311:6373. doi:10.1016/j.palaeo.2011.07.031 Google Scholar
Walossek, D., and Müller, K. J. 1992. The ‘Alum Shale window’—contribution of ‘Orsten’ arthropods to the phylogeny of Crustacea. Acta Zoologica, 73:305312. doi:10.1111/j.1463-6395.1992.tb01096.x Google Scholar
Walossek, D., Repetski, J. E., and Müller, K. J. 1994. An exceptionally preserved parasitic arthropod, Heymonsicambria taylori n. sp. (Arthropoda incertae sedis: Pentastomida), from Cambrian–Ordovician boundary beds of Newfoundland, Canada. Canadian Journal of Earth Sciences, 31:16641671. doi:10.1139/e94-149 Google Scholar
Wheatcroft, R. A., and Borgeld, J. C. 2000. Oceanic flood deposits on the northern California shelf: large-scale distribution and small-scale physical properties. Continental Shelf Research, 20:21632190. doi:10.1016/S0278-4343(00)00066-2 Google Scholar
Whittington, H. B. 1985. Introduction, p. 34. In Conway Morris, S., and Whittington, H. B. (eds.), Extraordinary Fossil Biotas: Their Ecological and Evolutionary Significance: Proceedings of a Royal Society Discussion Meeting Held on 20 and 21 February 1985. Philosophical Transactions of the Royal Society of London Series B 311, Royal Society, London.Google Scholar
Wilby, P. R., Briggs, D. E. G., Bernier, P., and Gaillard, C. 1996. Role of microbial mats in the fossilization of soft tissues. Geology, 24:787790. doi: 10.1130/0091-7613(1996)024<0787:ROMMIT>2.3.CO;2 Google Scholar
Wollanke, G., and Zimmerle, W. 1990. Petrographic and geochemical aspects of fossil embedding in exceptionally well preserved fossil deposits. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 69:5774.Google Scholar
Xiao, S., Knoll, A. H., Schiffbauer, J. D., Zhou, C., and Yuan, X. 2012. Comment on “Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists.” Science, 335:1169. doi: 10.1126/science.1218814 Google Scholar
Xiao, S., Yuan, X., Steiner, M., and Knoll, A. H. 2002. Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A reassessment of the Neoproterozoic Miaohe carbonaceous biota in South China. Journal of Paleontology, 76:347376.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558. doi:10.1038/35318 Google Scholar
Xiao, S., Zhou, C., Liu, P., Wang, D., and Yuan, X. 2014. Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation. Journal of Paleontology, 88:167.Google Scholar
Yin, L., Zhu, M., Knoll, A. H., Yuan, X., Zhang, J., and Hu, J. 2007. Doushantuo embryos preserved inside diapause egg cysts. Nature, 446:661663.Google Scholar
Young, G. A., Rudkin, D. M., Dobrzanski, E. P., Robson, S. P., and Nowlan, G. S. 2007. Exceptionally preserved Late Ordovician biotas from Manitoba, Canada. Geology, 35:883886.Google Scholar
Yuan, X., Chen, Z., Xiao, S., Wan, B., Guan, C., Wang, W., Zhou, C., and Hua, H. 2013. The Lantian biota: A new window onto the origin and early evolution of multicellular organisms. Chinese Science Bulletin (English Edition), 58:701707.Google Scholar
Yuan, X., Chen, Z., Xiao, S., Zhou, C., and Hua, H. 2011. An early Ediacaran assemblage of macroscopic and morphologically differentiated eukaryotes. Nature, 470:390393.Google Scholar
Zhang, L., Gu, X., Fan, C., Shang, J, Shen, Q., Wang, Z., and Shen, J. 2010. Impact of different benthic animals on phosphorus dynamics across the sediment-water interface. Journal of Environmental Sciences, 22:16741682.Google Scholar