We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The need for symmetry and ordering objects related to a “just right”-feeling is a common symptom in Tourette's syndrome (TS) and resembles symmetry behavior in obsessive-compulsive disorder, but its pathophysiology is unknown. We used a symptom provocation paradigm to investigate the neural correlates of symmetry behavior in TS and hypothesized the involvement of frontal-striatal and limbic brain areas.
Methods
Pictures of asymmetrically and symmetrically arranged objects were presented in randomized blocks (4 blocks of each condition) to 14 patients with TS and 10 matched healthy controls (HC). A H215O positron emission tomography scan was acquired during each stimulus block, resulting in 8 scans per subject. After each scan, state anxiety and symmetry behavior (the urge to rearrange objects) were measured using a visual analogue scale.
Results
During the asymmetry condition, TS patients showed increased regional cerebral blood flow (rCBF) in the anterior cingulate cortex, supplementary motor area, and inferior frontal cortex, whereas HC showed increased rCBF in the visual cortex, primary motor cortex, and dorsal prefrontal cortex. Symmetry ratings during provocation correlated positively with orbitofrontal activation in the TS group and sensorimotor activation in the HC group, and negatively with dorsal prefrontal activity in HC.
Conclusions
Results suggest that both motor and limbic circuits are involved in symmetry behavior in TS. Motor activity may relate to an urge to move or perform tics, and limbic activation may indicate that asymmetry stimuli are salient for TS patients. In contrast, symmetry provocation in HC resulted in activation of brain regions implicated in sensorimotor function and cognitive control.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.