We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Teter, Payne, and Allan “preconditioning” function plays a significant role in planewave DFT calculations. This function is often called the TPA preconditioner. We present a detailed study of this “preconditioning” function. We develop a general formula that can readily generate a class of “preconditioning” functions. These functions have higher order approximation accuracy and fulfill the two essential “preconditioning” purposes as required in planewave DFT calculations. Our general class of functions are expected to have applications in other areas.
In this paper, we study an adaptive finite element method for a class of nonlinear eigenvalue problems resulting from quantum physics that may have a nonconvex energy functional. We prove the convergence of adaptive finite element approximations and present several numerical examples of micro-structure of matter calculations that support our theory.
In this paper, a multi-parameter error resolutiontechnique is applied into a mixed finite element method for theStokes problem. By using this technique and establishing a multi-parameter asymptotic error expansion for the mixed finite element method, an approximation of higheraccuracy is obtained by multi-processor computers in parallel.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.