We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
CHD is associated with considerable burden of care. Up to one-third of babies born with CHD require surgery or intervention during the first year of life with an associated increased risk of surgical site infection. Pediatric wound care is informed largely by adult data, with no national or international guidelines available.
Aim:
To examine pediatric cardiac surgical wound care practices reported by healthcare professionals Australia and New Zealand-wide.
Methods:
A bi-national cross-sectional survey exploring pre-, intra- and post-operative wound practices was distributed using Exponential Non-Discriminative Snowball Sampling. Data were subject to descriptive analysis using SPSS Statistics 22.0.
Findings:
Sixty-eight surveys representing all Australian and New Zealand pediatric cardiac surgical services were analyzed. Most respondents were experienced nurses. Pre-operative care varied greatly in practice and pharmaceutical agents used. Little consistency was reported for intra- and post-operative wound care. Nursing and medical staff shared responsibility for wound care. Wound photography was widely used, but only uploaded to electronic medical records by some.
Discussion:
These results highlight that wound care management is largely informed at an institutional level. The many practices reported are likely to reflect a range of factors including cardiac condition complexity, surgery, prematurity, and the presence of scar tissue. The importance of a research and training program, which is multimodal, available, and reflective, is highlighted.
Conclusion:
These findings call for the establishment of a nurse-led program of research and education. The resultant suite of cardiac wound strategies could offer an effective and consistent pathway forward.
To examine the effectiveness of antimicrobial and antithrombogenic materials incorporated into peripherally inserted central catheters (PICCs) to prevent bloodstream infection, thrombosis, and catheter occlusion.
Methods:
Prospective cohort study involving 52 hospitals participating in the Michigan Hospital Medicine Safety Consortium. Sample included adult hospitalized medical patients who received a PICC between January 2013 and October 2019. Coated and impregnated catheters were identified by name, brand, and device marketing or regulatory materials. Multivariable Cox proportional hazards models with robust sandwich standard error estimates accounting for the clustered nature of data were used to identify factors associated with PICC complications in coated versus noncoated devices across general care, intensive care unit (ICU), and oncology patients. Results were expressed as hazard ratios (HRs) with corresponding 95% confidence intervals (CIs).
Results:
Of 42,562 patients with a PICC, 39,806 (93.5%) were plain polyurethane, 2,263 (5.3%) incorporated antimicrobial materials, and 921 (2.2%) incorporated antithrombogenic materials. Most were inserted in general ward settings (n = 28,111, 66.0%), with 12, 078 (28.4%) and 1,407 (3.3%) placed in ICU and oncological settings, respectively. Within the entire cohort, 540 (1.3%) developed thrombosis, 745 (1.8%) developed bloodstream infection, and 4,090 (9.6%) developed catheter occlusion. Adjusting for known risk factors, antimicrobial PICCs were not associated with infection reduction (HR, 1.16; 95% CI, 0.82–1.64), and antithrombogenic PICCs were not associated with reduction in thrombosis and occlusion (HR, 1.15; 95% CI, 0.92–1.44). Results were consistent across populations and care settings.
Conclusions:
Antimicrobial and antithrombogenic PICCs were not associated with a reduction in major catheter complications. Guidance aimed at informing use of these devices, balancing benefits against cost, appear necessary.
The approach to vascular access in children with CHD is a complex decision-making process that may have long-term implications. To date, evidence-based recommendations have not been established to inform this process.
Methods:
The RAND/UCLA Appropriateness Method was used to develop miniMAGIC, including sequential phases: definition of scope and key terms; information synthesis and literature review; expert multidisciplinary panel selection and engagement; case scenario development; and appropriateness ratings by expert panel via two rounds. Specific recommendations were made for children with CHD.
Results:
Recommendations were established for the appropriateness of the selection, characteristics, and insertion technique of intravenous catheters in children with CHD with both univentricular and biventricular physiology.
Conclusion:
miniMAGIC-CHD provides evidence-based criteria for intravenous catheter selection for children with CHD.