We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Volumetric-modulated arc therapy (VMAT) has emerged as a promising radiation treatment technique. One of the challenges in VMAT planning for lung carcinoma is the lack of consistency among different institutions with respect to what is considered an acceptable treatment plan in terms of target coverage and doses to the organs at risk (OAR). Additionally, the accuracy of dose calculations in the presence of heterogeneous medium (i.e. air) is another challenge in lung VMAT planning. Our objective is to develop an institutional criteria for non-stereotactic body radiotherapy (non-SBRT) lung treatment plans by evaluating the dosimetric impact of plan normalisation and dose calculation algorithms, including the Anisotropic Analytical Algorithm (AAA), AcurosXB (AXB) and Monte Carlo (MC) simulation, on VMAT plans for non-small cell lung cancer (NSCLC).
Methods:
The CT dataset of 20 patients with NSCLC was randomly selected to ensure a spectrum of target sizes and locations. All treatment planning was accomplished with 2–3 VMAT arcs and a prescription of 60 Gy in 30 fractions. Two plan normalisation methods were employed: (i) planning target volume (PTV) V100% = 95% and (ii) PTV V95% = 95%.
Results:
All three dose calculation algorithms revealed heterogeneous and conformal plans irrespective of plan normalisations. The PTV and OARs dose–volume constraints were met using both normalisation methods. However, we observed that AAA overestimated the minimum PTV doses by 2–5% regardless of plan normalisation. The mean PTV-V100% was lower for AAA in comparison with AXB and MC algorithms.
Conclusions:
VMAT is an effective radiotherapy technique for achieving greater target dose conformity, heterogeneity and dose fall-off from the PTV for the treatment of NSCLC. The results of this study can provide the basis for the development of local plan acceptability criteria for NSCLC VMAT plans, and the clinical implementation can be achieved with minimal or no imposition on resources and time constraints. Occasionally, plan normalisation of PTV-V95% = 95% may be required to ensure that the OAR dose tolerances are not exceeded.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.