We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
There is growing evidence that smoking increases the risk of developing psychiatric disorders, but the underlying mechanisms are largely unknown. We examine brain structure as a potential pathway between smoking and psychiatric disease liability.
Methods
We test associations between smoking (initiation, cigarettes per day, cessation, lifetime use) and depression, bipolar disorder, and schizophrenia, with and without correcting for volume of the amygdala, hippocampus, lateral and medial orbitofrontal cortex, superior frontal context, and cortical thickness and surface area. We use three methods that use summary statistics of genome-wide association studies to investigate genome-wide and local genetic overlap (genomic structural equation modeling, local analysis of (co)variant association), as well as causal associations (Mendelian randomization).
Results
While we find causal effects of smoking on brain volume in different brain areas, and with psychiatric disorders, brain volume did not seem to mediate the effect of smoking on psychiatric disorders.
Conclusions
While these findings are limited by characteristics of the included summary statistics (e.g. sample size), we conclude that brain volume of these areas is unlikely to explain a substantial part of any effect of smoking on psychiatric disorders. Nevertheless, genetic methods are valuable tools for exploring other potential mechanisms, such as brain functional connectivity, foregoing the need to collect all phenotypes in one dataset.
An important contributor to the decreased life expectancy of individuals with schizophrenia is sudden cardiac death. Arrhythmic disorders may play an important role herein, but the nature of the relationship between schizophrenia and arrhythmia is unclear.
Aims
To assess shared genetic liability and potential causal effects between schizophrenia and arrhythmic disorders and electrocardiogram (ECG) traits.
Method
We leveraged summary-level data of large-scale genome-wide association studies of schizophrenia (53 386 cases, 77 258 controls), arrhythmic disorders (atrial fibrillation, 55 114 cases, 482 295 controls; Brugada syndrome, 2820 cases, 10 001 controls) and ECG traits (heart rate (variability), PR interval, QT interval, JT interval and QRS duration, n = 46 952–293 051). We examined shared genetic liability by assessing global and local genetic correlations and conducting functional annotation. Bidirectional causal relations between schizophrenia and arrhythmic disorders and ECG traits were explored using Mendelian randomisation.
Results
There was no evidence for global genetic correlation, except between schizophrenia and Brugada syndrome (rg = 0.14, 95% CIs = 0.06–0.22, P = 4.0E−04). In contrast, strong positive and negative local correlations between schizophrenia and all cardiac traits were found across the genome. In the most strongly associated regions, genes related to immune and viral response mechanisms were overrepresented. Mendelian randomisation indicated that liability to schizophrenia causally increases Brugada syndrome risk (beta = 0.14, CIs = 0.03–0.25, P = 0.009) and heart rate during activity (beta = 0.25, CIs = 0.05–0.45, P = 0.015).
Conclusions
Despite little evidence for global genetic correlation, specific genomic regions and biological pathways emerged that are important for both schizophrenia and arrhythmia. The putative causal effect of liability to schizophrenia on Brugada syndrome warrants increased cardiac monitoring and early medical intervention in people with schizophrenia.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.