We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of this study is to understand the path for establishing digital health technologies-health technology assessment (DHT-HTA) in India.
Methods
A rapid review of HTA and DHT frameworks on PubMed (MEDLINE) and Google Scholar was conducted to identify DHT-HTA guidelines, and HTA processes in India. MS-Excel template was created with key domains for assessing DHT in resource-constrained settings based on studies and reports identified. Responses received from seventeen experts with varying expertise in DHT, HTA, clinical, and research were contacted using an online form. Following the principles of qualitative research rooted on grounded theory approach, themes and domains were derived for a framework which was again circulated through participants. Weightage for each theme was assigned based on the frequency of responses and qualifiers were used to interpret results. Inductively derived themes from these responses were clubbed together to identify macro-level systems requirements, and finally pre-requisites for setting up DHT-HTA framework was synthesized.
Results
HT are commonly perceived by experts (64.7 percent participants) as a technology strictly connected to health information. Real-world data (i.e., electronic health data) are recognized as a relevant tool in support of decision-making for clinical and managerial levels. Experts identified some pre-requisites for the establishment of DHT-HTA in the country in terms of infrastructure, contextual factors, training, finance, data security, and scale-up.
Conclusion
Our research not only identified the pre-requisites for the adoption of a DHT-HTA framework for India, but confirmed the need to address DHT-HTA’s acceptability among. Hospitals and health insurance providers.
This is a copy of the slides presented at the meeting but not formally written up for the volume.
Abstract
At heterojunctions between different oxide perovskite phases both lattice and electronic structure is modified by the junction. One interesting question that several groups have studied is just how far into the neighboring materials these perturbations extend. We have studied this for insulating phases as well as conducting phases. For insulating phases it appears that the lattice distortions are healed in a layer about one unit cell thick. By stacking different materials each of which is only a single unit cell thick we have obtained materials that exhibit new properties determined by the stacking architecture. For example, superlattices that lack inversion symmetry have a built-in polarization that is controlled by the direction of the strain asymmetry. For conducting phases, the electronic structure also seems to be modified mainly in a layer only a few unit cells thick. We have studied this in superlattices of SrTiO3 and LaMnO3 in which we vary the thickness of the layers. We use optical conductivity to probe the electronic structure in the near infrared to near ultraviolet spectral region. The conductivity is close to the average of the two constituents, but differs in certain spectral regions, especially for the films with the thinnest supercells.This work was supported by the Department of Energy Basic Energy Sciences program at the Fredrick Seitz Materials Research Laboratory at the University of Illinois, Urbana, IL.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.