We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To study the effect of deep inspiration breath hold (DIBH) on Fast-Forward trial for left-sided breast radiotherapy dosimetrically using tangential field-in-field (FiF), flattening filtered volumetric-modulated arc therapy (FF-VMAT) and flattening filter free volumetric-modulated arc therapy (FFF-VMAT) in comparison with free breathing (FB).
Methods:
Computed tomography images were acquired on 15 patients with carcinoma of left breast in FB and DIBH. Planning target volume (PTV) and organs at risk were contoured on both image sets. Dose of 26 Gy in five daily fractions was prescribed to PTV. FiF, FF-VMAT and FFF-VMAT plans were created in treatment planning system on both FB and DIBH. PTV V95%, V107%, D0·1 cc, CI and HI, heart V1·5 Gy, V7 Gy, lung left V8 Gy, monitor units (MU) and beam ON time were used for evaluation. Different technique analysis in same breathing condition and FB versus DIBH for same planning technique were performed.
Results:
Mean of all 15 patients was reported as mean ± 1 standard deviation. PTV V95% was 97·55 ± 0·10 (FiF), 95·75 ± 0·66 (FF-VMAT) and 96·15 ± 0·46 (FFF-VMAT) in FB while 97·34 ± 0·50 (FiF), 96·03 ± 0·71 (FF-VMAT) and 95·86 ± 0·63 (FFF-VMAT) in DIBH. Heart V7 Gy was 8·53 ± 4·26 (FiF), 8·86 ± 2·20 (FF-VMAT) and 9·27 ± 2·46 (FFF-VMAT) in FB while 6·30 ± 2·98 (FiF), 5·23 ± 2·20 (FF-VMAT) and 4·68 ± 2·01 (FFF-VMAT) in DIBH. p-value of heart V7 Gy between FB and DIBH was 0·278 (FiF), 0·009 (FF-VMAT) and 0·003 (FFF-VMAT). Beam ON time for FFF-VMAT was reduced by 65% (FF-VMAT) and 11% (FiF).
Conclusion:
Conformal dose to PTV was achieved better with VMAT plans. FFF-VMAT was delivered in less time compared to FF-VMAT and FiF for 26 Gy in five fractions. Heart dose can be significantly minimised with DIBH for VMAT plans.
Magnetic resonance imaging (MRI) is indispensable for treatment planning in prostate radiotherapy (PR). Registration of MRI when compared to planning CT (pCT) is prone to uncertainty and this is rarely reported. In this study, we have compared three different types of registration methods to justify the direct use of MRI in PR.
Methods and materials:
Thirty patients treated for PR were retrospectively selected for this study and all underwent both CT and MRI. The MR scans were registered to the pCT using markers, focused and unfocussed methods and their registration are REGM, REGF, and REGNF, respectively. Registration comparison is done using the translational differences of three axes from the centre-of-mass values of gross tumour volume (GTV) generated using MRI.
Results:
The average difference in all three axes (x, y, z) is (1, 2·5, 2·3 mm) and (1, 3, 2·3 mm) for REGF-REFNF and REGF-REGM, respectively. MR-based GTV Volume is less in comparison to CT-based GTV and it is significantly different (p < 0·001).
Findings:
Image registration uncertainty is unavoidable for a regular CT–MR workflow. Additional planning target volume margin ranging from 2 to 3mm could be avoided if MR-only workflow is employed. This reduction in the margin is beneficial for small tumours treated with hypofractionation.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.