We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose topological Hochschild homology as a tool for measuring ramification of maps of structured ring spectra. We determine second order topological Hochschild homology of the p-local integers. For the tamely ramified extension of the map from the connective Adams summand to p-local complex topological K-theory we determine the relative topological Hochschild homology and show that it detects the tame ramification of this extension. We show that the complexification map from connective topological real to complex K-theory shows features of a wildly ramified extension. We also determine relative topological Hochschild homology for some quotient maps with commutative quotients.
We consider the algebraic K-theory of a truncated polynomial algebra in several commuting variables, . This naturally leads to a new generalization of the big Witt vectors. If k is a perfect field of positive characteristic we describe the K-theory computation in terms of a cube of these Witt vectors on ℕn. If the characteristic of k does not divide any of the ai we compute the K-groups explicitly. We also compute the K-groups modulo torsion for k = ℤ.
To understand this K-theory spectrum we use the cyclotomic trace map to topological cyclic homology, and write as the iterated homotopy cofiber of an n-cube of spectra, each of which is easier to understand.
In this paper we extend the computation of the the typical curves of algebraic K-theory done by Lars Hesselholt and Ib Madsen to general tensor algebras. The models used allow us to determine the stages of the Taylor tower of algebraic K-theory as a functor of augmented algebras, as defined by Tom Goodwillie, when evaluated on derived tensor algebras.
For R a discrete ring, and M a simplicial R-bimodule, we let R(M) denote the (derived) tensor algebra of M over R, and πR denote the ring of formal (derived) power series in M over R. We define a natural transformation of functors of simplicial R-bimodules Φ: which is closely related to Waldhausen's equivalence We show that Φ induces an equivalence on any finite stage of Goodwillie's Taylor towers of the functors at any simplicial bimodule. This is used to show that there is an equivalence of functors , and for connected bimodules, also an equivalence
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.