We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
A blackboard based intelligent control system has been developed for a family of complex non-equilibrium materials processes. The system is being tested in the laboratory for control of a particular high risk, high value-added step in the manufacture of carbon-carbon composites. The system uses knowledge based methods in several fundamental ways to fill gaps left by control theory and process models. Most notable of these are (1) inferring from indirect measurements and history the process state at multiple, changing levels of abstraction, (2) anticipating problems and planning actions to reach goal (end of process) states, (3) selecting, executing and interpreting approximate models to predict process progression and (4) changing control objectives as the physical situation changes. The system has been demonstrated to substantially reduce processing time.
This paper describes OARPLAN, a prototype planning system that generates construction project plans from a description of the objects that comprise the completed facility. OARPLAN is based upon the notion that activities in a project plan can be viewed as intersections of their constituents: objects, actions and resources. Planning knowledge in OARPLAN is represented as constraints based on activity constituents and their interrelationships; the planner functions as a constraint satisfaction engine that attempts to satisfy these constraints. The goal of the OARPLAN project is to develop a planning shell for construction projects that (i) provides a natural and powerful constraint language for expressing knowledge about construction planning, and (ii) generates a facility construction plan by satisfying constraints expressed in this language.
To generate its construction plan, OARPLAN must be supplied with extensive knowledge about construction objects, actions and resources, and about spatial, topological, temporal and other relations that may exist between them. We suggest that much of the knowledge required to plan the construction of a given facility can be drawn directly from a three-dimensional CAD model of the facility, and from a variety of databases currently used in design and project management software. In the prototype OARPLAN system, facility data must be input directly as frames. However, we are collaborating with database researchers to develop intelligent interfaces to such sources of planning data, so that OARPLAN will eventually be able to send high level queries to an intelligent database access system without regard for the particular CAD system in which the project was designed.
We begin by explaining why classical AI planners and domain specific expert system approaches are both inadequate for the task of generating construction project plans. We describe the activity representation developed in OARPLAN and demonstrate its use in producing a plan of about 50 activities for a steel-frame building, based on spatial and topological constraints that express structural support, weather protection and safety concerns in construction planning. We conclude with a discussion of the research issues raised by our experiments with OARPLAN to date.
The First International Conference on Autonomous Agents brought together researchers concerned with implementing systems that perceive and act in dynamic, unpredictable environments, that coordinate interoperation among complementary component capabilities, and that perform significant jobs with a high degree of autonomy.
Email your librarian or administrator to recommend adding this to your organisation's collection.