We find the lower bound for the norm of the Hilbert matrix operator H on the weighted Bergman space Ap,α
\begin{equation*}\|H\|_{A^{p,\alpha}\rightarrow A^{p,\alpha}}\geq\frac{\pi}{\sin{\frac{(\alpha+2)\pi}{p}}}, \,\, \textnormal{for} \,\, 1<\alpha+2<p.\end{equation*} We show that if 4 ≤ 2(α + 2) ≤ p, then ∥H∥Ap,α → Ap,α =
$\frac{\pi}{\sin{\frac{(\alpha+2)\pi}{p}}}$, while if 2 ≤ α +2 < p < 2(α+2), upper bound for the norm ∥H∥Ap,α → Ap,α, better then known, is obtained.