We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Crystal-melt interfaces of binary hard spheres are investigated using molecular-dynamics simulation. For a diameter ratio α=0.414, two crystal phases coexisting with the fluid are possible, depending on the pressure. At low pressures, the liquid coexists with a pure fcc crystal of the larger particle, while at high pressures a 1:1 binary crystal of “NaCl” type is the coexisting phase. For both of these systems, we study the structural and dynamical changes as the interface is traversed from bulk crystal to bulk fluid through the calculation of density and diffusion coefficient profiles. It is observed that the total width of the interfacial region is narrower in the “NaCl”/binary fluid interface than in the corresponding lower pressure fcc/binary fluid system.
Email your librarian or administrator to recommend adding this to your organisation's collection.