We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Preventing the occurrence of depression/anxiety and suicide during adolescence can lead to substantive health gains over the course of an individual person’s life. This study set out to identify the expected population-level costs and health impacts of implementing universal and indicated school-based socio-emotional learning (SEL) programs in different country contexts.
Methods
A Markov model was developed to examine the effectiveness of delivering universal and indicated school-based SEL programs to prevent the onset of depression/anxiety and suicide deaths among adolescents. Intervention health impacts were measured in healthy life years gained (HLYGs) over a 100-year time horizon. Country-specific intervention costs were calculated and denominated in 2017 international dollars (2017 I$) under a health systems perspective. Cost-effectiveness findings were subsequently expressed in terms of I$ per HLYG. Analyses were conducted on a group of 20 countries from different regions and income levels, with final results aggregated and presented by country income group – that is, low and lower middle income countries (LLMICs) and upper middle and high-income countries (UMHICs). Uncertainty and sensitivity analyses were conducted to test model assumptions.
Results
Implementation costs ranged from an annual per capita investment of I$0.10 in LLMICs to I$0.16 in UMHICs for the universal SEL program and I$0.06 in LLMICs to I$0.09 in UMHICs for the indicated SEL program. The universal SEL program generated 100 HLYGs per 1 million population compared to 5 for the indicated SEL program in LLMICs. The cost per HLYG was I$958 in LLMICS and I$2,006 in UMHICs for the universal SEL program and I$11,123 in LLMICs and I$18,473 in UMHICs for the indicated SEL program. Cost-effectiveness findings were highly sensitive to variations around input parameter values involving the intervention effect sizes and the disability weight used to estimate HLYGs.
Conclusions
The results of this analysis suggest that universal and indicated SEL programs require a low level of investment (in the range of I$0.05 to I$0.20 per head of population) but that universal SEL programs produce significantly greater health benefits at a population level and therefore better value for money (e.g., less than I$1,000 per HLYG in LLMICs). Despite producing fewer population-level health benefits, the implementation of indicated SEL programs may be justified as a means of reducing population inequalities that affect high-risk populations who would benefit from a more tailored intervention approach.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.