We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Objects of various integer sizes, o1, · ··, on, are to be packed together into bins of size N as they arrive at a service facility. The number of objects of size oi which arrive by time t is , where the components of are independent renewal processes, with At/t → λ as t → ∞. The empty space in those bins which are neither empty nor full at time t is called the wasted space and the system is declared stabilizable if for some finite B there exists a bin-packing algorithm whose use guarantees the expected wasted space is less than B for all t. We show that the system is stabilizable if the arrival processes are Poisson and λ lies in the interior of a certain convex polyhedral cone Λ. In this case there exists a bin-packing algorithm which stabilizes the system without needing to know λ. However, if λ lies on the boundary of Λ the wasted space grows as and if λ is exterior to Λ it grows as O(t); these conclusions hold even if objects may be repacked as often as desired.
A method for proving the invariance of hitting-time distributions with respect to the control strategy of a Markov chain is presented. The method is applied to resource-sharing problems. It provides a new proof of a known result and extends it. Sufficient conditions for such an invariance are given and are illustrated by examples.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.