We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This article is concerned with eigenvalue problems of the form Au = λTu in a Hilbert space H, where Ais a selfadjoint positive operator generated by a second-order Sturm-Liouville differential expression and T a selfadjoint indefinite multiplicative operator which is one-to-one. Emphasis is on the full-range and partial-range expansionproperties of the eigenfunctions.
An attempt is made to provide a sound basis for the method of singular eigenfunction expansions which has been in vogue in linear transport theory for some decades. The procedure is exemplified by a treatment of the one-dimensional neutron transport equation with a degenerate scattering function. Full-range as well as half-range results are derived. At the end of the paper the implications for a certain matrix factorization problem are given.
The aim of this paper is to give a functional analytic treatment of the homogeneous and inhomogeneous linear transport equation in the case that the parameter c occurring in that equation equals 1. The larger part of the paper is devoted to the study of a certain operator T−1 A in the space L2(– 1, 1). A peculiarity not arising in the case c < 1 (treated amongst others by Hangelbroek) is that, for c = 1, the operator T−1A has a double eigenvalue 0 and that it is no longer hermitian. The Spectral Theorem is used to diagonalise the operator as far as possible, and full-range and half-range formulae are derived. The results are applied inter alia to give a new treatment of the Milne problem concerning the propagation of light in a stellar atmosphere.
We use the notations and results of Part I of this paper [see 7]. Sections and formulae of that paper will be referred to as section I.4, formula (1.5), etc. In particular, T, A, TN0, K, σ, F and Λ(λ) will have the same meaning as in [7].
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.