We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The zebrafish has recently assumed a central position in the study of vertebrate development. Numerous studies of other fish have shown that their central nervous systems, and especially their visual systems, continue to add new neurons throughout life, which is probably related to their abilities to regenerate axons and whole nervous tissue. Retinal neurogenesis had not been examined in adult zebrafish, and two reports concluded that the optic tectum ceased neurogenesis early in life, so the question arose whether the zebrafish was anomalous in this regard. We labeled embryonic (24- and 48-h postfertilization) and adult zebrafish with the thymidine analog, bromo-deoxyuridine, and, after short and long survivals, examined the retina and brain for labeled cells. They were abundant in both the optic tectum and the retina. Although the rate of retinal growth slows considerably between embryonic and adult stages, the patterns of neurogenesis in both the embryo and the adult are similar to those described in other fish, so these “fish-specific” features of general interest can justifiably be studied in zebrafish.
Email your librarian or administrator to recommend adding this to your organisation's collection.