We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
The production of potent toxins by bloom-, scum- and mat-forming cyanobacteria, in fresh-, brackish and marine waters, appears to be a global phenomenon. Cyanobacterial toxins can also be produced by cyanobacteria from terrestrial sources. The range and number of known cyanobacterial toxins are increasing apace as associated poisoning incidents are investigated, and increasingly powerful analytical methods are applied to complement toxicity-based studies on both natural samples and laboratory isolates of cyanobacteria. Water quality management to reduce toxic cyanobacterial mass developments, and schemes to mitigate the potential effects of cyanobacterial toxins, require an understanding of the occurrence and properties of the toxins and of the exposure routes via which the toxins present risks to health. Here, we review advances in the recognition of cyanobacterial toxins and their toxicity, and of the exposure routes with reference to human health, namely via skin contact, inhalation, haemodialysis and ingestion (the oral route).
Email your librarian or administrator to recommend adding this to your organisation's collection.