We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Stochastic embeddings of finite metric spaces into graph-theoretic trees have proven to be a vital tool for constructing approximation algorithms in theoretical computer science. In the present work, we build out some of the basic theory of stochastic embeddings in the infinite setting with an aim toward applications to Lipschitz free space theory. We prove that proper metric spaces stochastically embedding into $\mathbb {R}$-trees have Lipschitz free spaces isomorphic to $L^1$-spaces. We then undergo a systematic study of stochastic embeddability of Gromov hyperbolic metric spaces into $\mathbb {R}$-trees by way of stochastic embeddability of their boundaries into ultrametric spaces. The following are obtained as our main results: (1) every snowflake of a compact, finite Nagata-dimensional metric space stochastically embeds into an ultrametric space and has Lipschitz free space isomorphic to $\ell ^1$, (2) the Lipschitz free space over hyperbolic n-space is isomorphic to the Lipschitz free space over Euclidean n-space and (3) every infinite, finitely generated hyperbolic group stochastically embeds into an $\mathbb {R}$-tree, has Lipschitz free space isomorphic to $\ell ^1$, and admits a proper, uniformly Lipschitz affine action on $\ell ^1$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.