We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Trypanosome infections were monitored in three species of tsetse fly (Glossina pallidipes Austen, G. morsitans centralis Machado, and G. brevipalpis News-tead) at four locations in the Kagera River region of Rwanda from May 1989 to September 1990. Two of the four areas (Mpanga Ranch and Bukora Ranch) were subjected to tsetse fly suppression operations with odour-baited traps. Proboscis infections of the Trypanosoma congolense and T. vivax types accounted for roughly equal numbers of the 207 mature infections detected (3.8%). Variation in infection rates was area-specific rather than tsetse species-specific. Order of magnitude differences in tsetse fly densities among areas were not correlated with differences in infection rates at the start of tsetse fly suppression operations. Similarly, declines in population density on both control and experimental areas were not associated with significant changes in infection rates. The prevalence of trypanosomiasis in cattle at Bukora Ranch was not affected by a roughly 90% reduction in Glossina densities. T. congolense accounted for 79% of the infections at an overall prevalence rate of 5.5%. Trypanosomiasis in cattle persisted at extremely low densities of about 0.1 fly/trap/day. Treatment of cattle with diminazene aceturate (BereniR) suggested that many T. congolense parasites were drug resistant, and hence, were cycling among cattle due to the few Glossina present.
Email your librarian or administrator to recommend adding this to your organisation's collection.