We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
We propose a new fractional Laplacian for bounded domains, expressed as a conservation law and thus particularly suited to finite-volume schemes. Our approach permits the direct prescription of no-flux boundary conditions. We first show the well-posedness theory for the fractional heat equation. We also develop a numerical scheme, which correctly captures the action of the fractional Laplacian and its anomalous diffusion effect. We benchmark numerical solutions for the Lévy–Fokker–Planck equation against known analytical solutions. We conclude by numerically exploring properties of these equations with respect to their stationary states and long-time asymptotics.
Basic numerical processing has been regularly assessed using numerical nonsymbolic and symbolic comparison tasks. It has been assumed that these tasks index similar underlying processes. However, the evidence concerning the reliability and convergent validity across different versions of these tasks is inconclusive. We explored the reliability and convergent validity between two numerical comparison tasks (nonsymbolic vs. symbolic) in school-aged children. The relations between performance in both tasks and mental arithmetic were described and a developmental trajectories’ analysis was also conducted. The influence of verbal and visuospatial working memory processes and age was controlled for in the analyses. Results show significant reliability (p < .001) between Block 1 and 2 for nonsymbolic task (global adjusted RT (adjRT): r = .78, global efficiency measures (EMs): r = .74) and, for symbolic task (adjRT: r = .86, EMs: r = .86). Also, significant convergent validity between tasks (p < .001) for both adjRT (r = .71) and EMs (r = .70) were found after controlling for working memory and age. Finally, it was found the relationship between nonsymbolic and symbolic efficiencies varies across the sample’s age range. Overall, these findings suggest both tasks index the same underlying cognitive architecture and are appropriate to explore the Approximate Number System (ANS) characteristics. The evidence supports the central role of ANS in arithmetic efficiency and suggests there are differences across the age range assessed, concerning the extent to which efficiency in nonsymbolic and symbolic tasks reflects ANS acuity.
Email your librarian or administrator to recommend adding this to your organisation's collection.