We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As SARS-CoV-2 infection is sweeping the globe, early identification and timely management of infected patients will alleviate unmet health care demands and ultimately control of the disease. Remote COVID-19 self-assessment tools will offer a potential strategy for patient guidance on medical consultation versus home care without requiring direct attention from healthcare professionals.
Objective(s):
This study aimed to assess the validity and interrater reliability of the initial and modified versions of a COVID-19 self-assessment prediction tool introduced by the Egyptian Ministry of Health and Population (MoHP) early in the epidemic. The scoring tool was released for the public through media outlets for remote self-assessment of SARS-CoV-2 infection connecting patients with the appropriate level of care.
Methods:
We evaluated the initial score in the analysis of 818 consecutive cases presenting with symptoms suggesting COVID-19 in a single-primary health care clinic in Alexandria during the epidemic in Egypt (mid-February through July). Validity parameters, interrater agreement and accuracy of the score as a triage tool were calculated versus the COVID-19 polymerase chain reaction (PCR) test.
Results:
A total of 818 patients reporting symptoms potentially attributable to COVID-19 were enrolled. The initial tool correctly identified 296 of 390 COVID-19 PCR +ve cases (sensitivity = 75.9%, specificity = 42.3%, positive predictive value = 54.5%, negative predictive value = 65.8%). The modified versions of the MoHP triage score yielded comparable results albeit with a better accuracy during the late epidemic phase. Recent history of travel [OR (95% CI) = 12.1 (5.0–29.4)] and being a health care worker [OR (95% CI) = 5.8 (2.8–11.9)] were major predictors of SARS-CoV-2 infection in early and late epidemic phases, respectively. On the other hand, direct contact with a respiratory infection case increased the risk of infection by three folds throughout the epidemic period.
Conclusion:
The tested score has a sufficient predictive value and potential as a triage tool in primary health care settings. Updated implementation of this home-grown tool will improve COVID-19 response at the primary health care level.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.