Throughout this paper R will be an associative ring with unity and all R-modules are unitary. The right (resp. left) annihilator in R of a subset X of a module is denoted by r(X)(resp. I(X)). The Jacobson radical of R is denoted by J(R), the singular ideals are denoted by Z(RR) and Z(RR) and the socles by Soc(RR) and Soc(RR). For a module M, E(M) and PE(M) denote the injective and pure-injective envelopes of M, respectively. For a submodule A ⊆ M, the notation A ⊆⊕M will mean that A is a direct summand of M.