We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Conducting polypyrrole polymer films have been modified by ion implantation. The resulting cross linking leads to changes in resistivity and electrochemical behaviour. By ion implantation through masks or with a focused ion beam lateral structures can be produced which can be imaged by scanning electron microscopy and optical absorption. The implanted polypyrrole layers can be removed by electrochemical treatment while not implanted regions can be electroplated. Therefore in combination with electrochemical treatment three dimensional structures have been generated and were investigated by atomic force microscopy. In order to study structures in the submicrometer range implantation experiments with a focused ion beam were performed and the minimal line widths were investigated by scanning electron microscopy.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.