We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper is a continuation of three recent articles concerning the structure of hyperinvariant subspace lattices of operators on a (separable, infinite dimensional) Hilbert space $\mathcal{H}$. We show herein, in particular, that there exists a “universal” fixed block-diagonal operator $B$ on $\mathcal{H}$ such that if $\varepsilon >0$ is given and $T$ is an arbitrary nonalgebraic operator on $\mathcal{H}$, then there exists a compact operator $K$ of norm less than $\varepsilon $ such that (i) Hlat$(T)$ is isomorphic as a complete lattice to Hlat$(B+K)$ and (ii) $B+K$ is a quasidiagonal, ${{C}_{00}}$, $(\text{BCP})$-operator with spectrum and left essential spectrum the unit disc. In the last four sections of the paper, we investigate the possible structures of the hyperlattice of an arbitrary algebraic operator. Contrary to existing conjectures, Hlat$(T)$ need not be generated by the ranges and kernels of the powers of $T$ in the nilpotent case. In fact, this lattice can be infinite.
Hinčin proved that any limit law, associated with a triangular array of infinitesimal random variables, is infinitely divisible. The analogous result for additive free convolution was proved earlier by Bercovici and Pata. In this paper we will prove corresponding results for the multiplicative free convolution of measures defined on the unit circle and on the positive half-line.