We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Intergovernmental Negotiating Committee (INC) on plastic pollution are United Nations member states who will convene for the second part of the fifth session of the Intergovernmental Negotiating Committee in Geneva (INC5.2) 5-14 August, 2025 to negotiate a global plastics treaty. The Scientists’ Coalition for an Effective Plastics Treaty (‘The Scientists’ Coalition’) is an international network of independent scientific and technical experts who have been contributing robust science to treaty negotiators since INC1 in 2022. The Scientists’ Coalition established a series of working groups following INC5.1 in Busan, Korea 25 November – 1 December 2024. Each working group has produced science-based responses to the selected articles of ‘the Chair’s text’ (the latest version of the draft global plastics treaty text). This Letter to the Editor summarises those responses.
A seven-decimal table is presented of the area under the unit normal curve, for abscissae expressed in terms of the “probable error” or PE. From the method of calculation, the partial verification by means of other tables, and the safeguards taken in the routine of computation, it is safe to consider the table reliable. Errors in previously published tables are pointed out.
Internal and external rotation of the shoulder is often challenging to quantify in the clinic. Existing technologies, such as motion capture, can be expensive or require significant time to setup, collect data, and process and analyze the data. Other methods may rely on surveys or analog tools, which are subject to interpretation. The current study evaluates a novel, engineered, wearable sensor system for improved internal and external shoulder rotation monitoring, and applies it in healthy individuals. Using the design principles of the Japanese art of kirigami (folding and cutting of paper to design 3D shapes), the sensor platform conforms to the shape of the shoulder with four on-board strain gauges to measure movement. Our objective was to examine how well this kirigami-inspired shoulder patch could identify differences in shoulder kinematics between internal and external rotation as individuals moved their humerus through movement patterns defined by Codman’s paradox. Seventeen participants donned the sensor while the strain gauges measured skin deformation patterns during the participants’ movement. One-dimensional statistical parametric mapping explored differences in strain voltage between the rotations. The sensor detected distinct differences between the internal and external shoulder rotation movements. Three of the four strain gauges detected significant temporal differences between internal and external rotation (all p < .047), particularly for the strain gauges placed distal or posterior to the acromion. These results are clinically significant, as they suggest a new class of wearable sensors conforming to the shoulder can measure differences in skin surface deformation corresponding to the underlying humerus rotation.
This chapter investigates the Fennoscandian uplift area since the latest Ice Age and addresses the question if glacial isostatic adjustment may influence current seismicity. The region is in an intraplate area, with stresses caused by the lithospheric relative plate motions. Discussions on whether uplift and plate tectonics are the only causes of stress have been going on for many years in the scientific community.
This review considers the improved sensitivity of the seismograph networks, and at the same time attempts to omit man-made explosions and mining events in the pattern, to present the best possible earthquake pattern. Stress orientations and their connection to the uplift pattern and known tectonics are evaluated. Besides plate motion and uplift, one finds that some regions are affected stress-wise by differences in geographical sediment loading as well as by topography variations. The stress release in the present-day earthquakes shows a pattern that deviates from that of the time right after the Ice Age. This chapter treats the stress pattern generalized for Fennoscandia and guides the interested reader to more details in the national chapters.