For a class of homogeneous Cantor sets, we find an explicit formula for their packing dimensions. We then turn our attention to the value of packing measures. The exact value of packing measure for homogeneous Cantor sets has not yet been calculated even though that of Hausdorff measures was evaluated by Qu, Rao and Su in (2001). We give a reasonable lower bound for the packing measures of homogeneous Cantor sets. Our results indicate that duality does not hold between Hausdorff and packing measures.