We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper focuses on the fundamental aspects of super-resolution, particularly addressing the stability of super-resolution and the estimation of two-point resolution. Our first major contribution is the introduction of two location-amplitude identities that characterize the relationships between locations and amplitudes of true and recovered sources in the one-dimensional super-resolution problem. These identities facilitate direct derivations of the super-resolution capabilities for recovering the number, location, and amplitude of sources, significantly advancing existing estimations to levels of practical relevance. As a natural extension, we establish the stability of a specific $l_{0}$ minimization algorithm in the super-resolution problem.
The second crucial contribution of this paper is the theoretical proof of a two-point resolution limit in multi-dimensional spaces. The resolution limit is expressed as
$$\begin{align*}\mathscr R = \frac{4\arcsin \left(\left(\frac{\sigma}{m_{\min}}\right)^{\frac{1}{2}} \right)}{\Omega} \end{align*}$$
for ${\frac {\sigma }{m_{\min }}}{\leqslant }{\frac {1}{2}}$, where ${\frac {\sigma }{m_{\min }}}$ represents the inverse of the signal-to-noise ratio (${\mathrm {SNR}}$) and $\Omega $ is the cutoff frequency. It also demonstrates that for resolving two point sources, the resolution can exceed the Rayleigh limit ${\frac {\pi }{\Omega }}$ when the signal-to-noise ratio (SNR) exceeds $2$. Moreover, we find a tractable algorithm that achieves the resolution ${\mathscr {R}}$ when distinguishing two sources.
The multifrequency electrical impedance tomography consists in retrieving the conductivity distribution of a sample by injecting a finite number of currents with multiple frequencies. In this paper, we consider the case where the conductivity distribution is piecewise constant, takes a constant value outside a single smooth anomaly, and a frequency dependent function inside the anomaly itself. Using an original spectral decomposition of the solution of the forward conductivity problem in terms of Poincaré variational eigenelements, we retrieve the Cauchy data corresponding to the extreme case of a perfect conductor, and the conductivity profile. We then reconstruct the anomaly from the Cauchy data. The numerical experiments are conducted using gradient descent optimization algorithms.
In this paper we consider the problem of reconstructing sources in a homogeneous viscoelastic medium from wavefield measurements. We first present a modified time-reversal imaging algorithm based on a weighted Helmholtz decomposition and justify mathematically that it provides a better approximation than by simply time reversing the displacement field, where artifacts appear due to the coupling between the pressure and shear waves. Then we investigate the source inverse problem in an elastic attenuating medium. We provide a regularized time-reversal imaging which corrects the attenuation effect at the first order. The results of this paper yield the fundamental tools for solving imaging problems in elastic media using cross-correlation techniques.
We consider a purely quasi-incompressible elasticity model. We rigorously establish asymptotic expansions of near- and far-field measurements of the transient elastic wave induced by a small elastic anomaly. Our proof uses layer potential techniques for the modified Stokes system. Based on these formulae, we design asymptotic imaging methods leading to a quantitative estimation of elastic and geometrical parameters of the anomaly.
In this paper, we provide the mathematical basis for three different magneto-acoustic imaging approaches (vibration potential tomography, magneto-acoustic tomography with magnetic induction and magneto-acoustic current imaging) and propose new algorithms for solving the inverse problem for each of them.
The notion of polarization tensor is employed for the derivation of the leading-order boundary perturbations in the steady-state voltage potentials that are due to the presence of conductivity inclusions of small diameter. Recently, Capdeboscq and Vogelius obtained optimal bounds of Hashin-Shtrikman type for the trace of the polarization tensor, showing that every pair satisfying these optimal bounds arises as the eigenvalues of a polarization tensor associated with a coated ellipse. In this paper, we give numerical evidence of the fact that the set of possible polarization tensor eigenvalue pairs can also be obtained using simply connected domains. Our numerical computations are based on a boundary integral method.
In this paper we discuss the approximate reconstruction of inhomogeneities of small volume. The data used for the reconstruction consist of boundary integrals of the (observed) electromagnetic fields. The numerical algorithms discussed are based on highly accurate asymptotic formulae for the electromagnetic fields in the presence of small volume inhomogeneities.
Nous écrivons et nous justifions des conditions aux limites approchéespour descouches minces périodiques recouvrant un objetparfaitement conducteur en polarisation transverse électrique ettransverse magnétique.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.