We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Rings and distributive lattices can both be considered as semirings with commutative regular addition. Within this framework we can consider subdirect products of rings and distributive lattices. We may also require that the semirings with these restrictions are regarded as algebras with two binary operations and the unary operation of additive inversion (within the additive subgroup of the semiring). We can also consider distributive lattices with the two binary operations and the identity mapping as the unary operation. This makes it possible to speak of the join of ring varieties and distributive lattices. We restrict the ring varieties in order that their join with distributive lattices consist only of subdirect products. In certain cases these subdirect products can be obtained via a general construction of semirings by means of rings and distributive lattices.
The lattice of all tolerance relations (that is, reflexive, symmetric compatible relations) on a lattice is investigated. For modular lattices some examples are given which show that such relations do naturally occur.
Every poset with 0 is determined by various semigroups of isotone selfmaps which preserve 0. Two theorems along these lines are given and applied to some recent results concerning relation semigroups on topological spaces.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.