We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Celiac disease (CD), an autoimmune disorder triggered by gluten, impacts about one percent of the population. Only one-third receive a diagnosis, leaving the majority unaware of their condition. Untreated CD can lead to gut lining damage, resulting in malnutrition, anemia, and osteoporosis. Our primary goal was to identify at-risk groups and assess the cost-effectiveness of active case finding in primary care.
Methods
Our methodology involved systematic reviews and meta-analyses focusing on the accuracy of CD risk factors (chronic conditions and symptoms) and diagnostic tests (serological and genetic). Prediction models, based on identified risk factors, were developed for identifying individuals who would benefit from CD testing in routine primary care. Additionally, an online survey gauged individuals’ preferences regarding diagnostic certainty before initiating a gluten-free diet. This information informed the development of economic models evaluating the cost-effectiveness of various active case finding strategies.
Results
Individuals with dermatitis herpetiformis, a family history of CD, migraine, anemia, type 1 diabetes, osteoporosis, or chronic liver disease showed one and a half to two times higher risk of having CD. IgA tTG, and EMA demonstrated good diagnostic accuracy. Genetic tests showed high sensitivity but low specificity. Survey results indicated substantial variation in preference for certainty from a blood test before initiating a gluten-free diet. Cost-effectiveness analyses showed that, in adults, IgA tTG at a one percent pre-test probability (equivalent to population screening) was the most cost effective. For non-population screening strategies, IgA EMA plus HLA was most cost effective. There was substantial uncertainty in economic model results.
Conclusions
While population-based screening with IgA tTG appears the most cost effective in adults, decisions for implementation should not solely rely on economic analyses. Future research should explore whether population-based CD screening aligns with UK National Screening Committee criteria and requires a long-term randomized controlled trial of screening strategies.
Although the link between alcohol involvement and behavioral phenotypes (e.g. impulsivity, negative affect, executive function [EF]) is well-established, the directionality of these associations, specificity to stages of alcohol involvement, and extent of shared genetic liability remain unclear. We estimate longitudinal associations between transitions among alcohol milestones, behavioral phenotypes, and indices of genetic risk.
Methods
Data came from the Collaborative Study on the Genetics of Alcoholism (n = 3681; ages 11–36). Alcohol transitions (first: drink, intoxication, alcohol use disorder [AUD] symptom, AUD diagnosis), internalizing, and externalizing phenotypes came from the Semi-Structured Assessment for the Genetics of Alcoholism. EF was measured with the Tower of London and Visual Span Tasks. Polygenic scores (PGS) were computed for alcohol-related and behavioral phenotypes. Cox models estimated associations among PGS, behavior, and alcohol milestones.
Results
Externalizing phenotypes (e.g. conduct disorder symptoms) were associated with future initiation and drinking problems (hazard ratio (HR)⩾1.16). Internalizing (e.g. social anxiety) was associated with hazards for progression from first drink to severe AUD (HR⩾1.55). Initiation and AUD were associated with increased hazards for later depressive symptoms and suicidal ideation (HR⩾1.38), and initiation was associated with increased hazards for future conduct symptoms (HR = 1.60). EF was not associated with alcohol transitions. Drinks per week PGS was linked with increased hazards for alcohol transitions (HR⩾1.06). Problematic alcohol use PGS increased hazards for suicidal ideation (HR = 1.20).
Conclusions
Behavioral markers of addiction vulnerability precede and follow alcohol transitions, highlighting dynamic, bidirectional relationships between behavior and emerging addiction.
This chapter traces the development of monolingual learners’ dictionaries (MLD) from their genesis in the 1930s through their current internet editions. Starting from the pioneering work of West, Palmer, and Hornby, it shows how the aim of enabling learners to read and write English effectively informed the developing content of MLDs, from the Oxford Advanced Learner’s through the Longman, Collins, Cambridge, Macmillan, and American Merriam-Webster dictionaries. The introduction of explicit information on grammatical and lexical patterning including collocations and idioms, the use of a limited defining vocabulary, the use of a computer corpus of texts, and the inclusion of frequency information all contributed to the profile of the MLD as it is known today. Increasing concern for accessibility has influenced both the layout of dictionary entries and the presentation of word senses in longer entries, with the use of guide words and menus. The chapter ends with a brief review of the benefits and challenges of migrating MLDs to the electronic medium, especially the Internet.
We use Raman scattering to study the spatially-resolved strain and stress in a complex zinc blende GaAs/GaP heterostructured nanowire which contains both axial and radial interfaces. The nanowires are grown by metal-organic chemical vapor deposition in the [111] direction with Au nano particles as catalysts, High spatial resolution Raman scans along the nanowires show the GaAs/GaP interface is clearly identifiable. We interpret the phonon energy shifts in each material as one approaches the interface.
Recently, Fickenscher et al. [1] have shown that, in a core-multi-shell structure where a GaAs quantum well is embedded into an AlGaAs shell wrapped around a [111] oriented GaAs nanowire, the electron and hole ground states are strongly confined to the corners of the hexagonally symmetric quantum well. Thus this confinement defines quantum wires which run along the length of the nanowires along its corners. Here we review single nanowire photoluminescence measurements which show the significant confinement energy of the excitons. For well widths larger than 5 nm, optical transitions between electron and hole excited states can be seen in excitation spectra, while for widths less than 5 nm only the ground state optical transitions are observed. For well widths smaller than 5 nm, high resolution spatially resolved photoluminescence measurements show directly the appearance of localized states. Single nanowire spectra from the 4 nm QWT sample display ultranarrow emission lines on the high energy side of the luminescence band. Spatially-resolved PL images show that these quantum dots are localized randomly along the length of the wire.
We study the photocurrent from photoexcited charged carriers excited with lasers of energy both above and below the energy gap in CdS nanostructures. We observe non-linear photocurrents in CdS nanosheet devices in the metal-semiconductor-metal configuration with Schottky contacts for sub-band gap excitations. Analysis of two-photon absorption dominated photocurrents reveals a nonlinear coefficient of β = 2 cm/GW for these nanosheet devices, which is comparable to those of bulk CdS. We demonstrate the use of the photocurrent polarization measurements to determine the orientation of atoms in the nanosheet.
We demonstrate the newly developed technique Photomodulated Rayleigh Scattering spectroscopy in order to probe the electronic band structure of single semiconductor nanowires. We show that both the electronic transition energies and nanowire diameter can be measured simultaneously and with high accuracy in a single non-destructive measurement. We demonstrate our results for zincblende GaAs as well as wurtzite InP nanowires where we probed the band gaps and transition energies at both room and low temperatures. This technique should advance the study of optical properties of single nanowires as well as other types of nanostructures.
Sir George Darwin (1845–1912) was the second son of Charles Darwin. After studying mathematics at Cambridge he read for the Bar, but soon returned to science and to Cambridge, where in 1883 he was appointed Plumian Professor of Astronomy and Experimental Philosophy. His work was concerned primarily with the effect of the sun and moon on tidal forces on Earth, and with the theoretical cosmogony which evolved from practical observation: he formulated the fission theory of the formation of the moon (that the moon was formed from still-molten matter pulled away from the Earth by solar tides). He also developed a theory of evolution for the Sun–Earth–Moon system based on mathematical analysis in geophysical theory. This volume, published in 1916 after the author's death, includes a biographical memoir by his brother Sir Francis Darwin, his inaugural lecture and his lectures on George W. Hill's lunar theory.
In the spirit of Frege's gripping opener in “Ueber Sinnund Bedeutung”, one can equally well say that the concept of existence challenges reflection; for how can one deny that Pegasus exists without presuming existence? After all, such claims can be informative, for they could be false. Consequently, one might argue, they must say something about something. Thus, they succeed in being, in a back-handed, paradoxical way, existence statements of a sort. This problem is very old; it is Plato's problem of non-being. Frege's solution to the problem is also well known.
To investigate the marked increase noted over an 8-month period in the number of Legionella pneumophila isolates recovered from bronchoalveolar lavage fluid specimens obtained during bronchoscopy in our healthcare system.
Setting.
Bronchoscopy suite that serves a 580-bed tertiary care center and a large, multisite, faculty practice plan with approximately 2 million outpatient visits per year.
Methods.
Cultures of environmental specimens from the bronchoscopy suite were performed, including samples from the air and water filters, bronchoscopes, and the ice machine, with the aim of identifying Legionella species. Specimens were filtered and acid-treated and then inoculated on buffered charcoal yeast extract agar. Serogrouping was performed on all isolates recovered from patient and environmental samples.
Results.
AU L. pneumophila isolates recovered from patients were serogroup 8, a serogroup that is not usually recovered in our facility. An epidemiologic investigation of the bronchoscopy suite revealed the ice machine to be contaminated with L. pneumophila serogroup 8. Patients were exposed to the organism as a result of a recently adopted practice in the bronchoscopy suite that involved directly immersing uncapped syringes of sterile saline in contaminated ice baths during the procedures. At least 1 patient was ill as a result of the pseudo-outbreak. Molecular typing of isolates recovered from patient and environmental samples revealed that the isolates were indistinguishable.
Conclusions.
Extensive cleaning of the ice machine and replacement of the machine's water filter ended the pseudo-outbreak. This episode emphasizes the importance of using aseptic technique when performing invasive procedures, such as bronchoscopies. It also demonstrates the importance of reviewing procedures in all patient areas to ensure compliance with facility policies for providing a safe patient environment.
We report on single dot photoluminescence imaging and spectroscopy at B=0T on magnetically doped CdMnTe self-assembled quantum dots with average Mn concentration of several percent. Quasi-resonant excitation with circularly polarized laser leads to formation of magnetic polarons with magnetization induced by the laser light. In this case all quantum dots are polarized in the same direction. In contrast, when the dots are populated using above the barrier excitation, with randomly polarized excitons, the resultant magnetization is random and varies from dot to dot. These experiments demonstrate a way to control the magnetization of magnetically doped quantum dots by means of light excitation. In addition, they point towards extremely long spin memory times in these structures, reaching hundreds of microseconds, making CdMnTe quantum dots promising candidates for local magnetic field sources on the nanoscale.
Unsaturated vegetated soils are an important component in performance assessment models used to quantify risks associated with deep engineered repositories for underground radioactive waste disposal. Therefore, experimental studies, funded by Nirex over nearly 20 years, have been undertaken at Imperial College to study the transfer of radionuclides (Cl-36, I-129, Tc-99) from contaminated groundwater into crops. In parallel to this has been a modelling programme to aid interpretation of the experimental data, obtain parameter values characterising transport in soil and plant uptake and provide new representations of near-surface processes for performance assessment. A particular challenge in achieving these objectives is that the scale of the experimental work (typically ≤ 1m) is much smaller than that required in performance assessment. In this paper, a new methodology is developed for upscaling model results obtained at the experimental scale for use in catchment scale models. The method is based on characterising soil heterogeneity using soil texture. This has the advantage of allowing hydrological and radionuclide transport parameters to be correlated in a consistent manner. An initial investigation into the calculation of effective (i.e. upscaled) hydrological and transport parameters has been undertaken and shows the results to be potentially highly (and non-linearly) sensitive to soil properties. Consequently, they have important implications for future site characterisation programmes supporting a proposed underground waste repository.
We have developed high current density thin-film silicon n-i-p diodes for low cost and low temperature two-dimensional diode-logic memory array applications. The diodes are fabricated at temperatures below 250°C on glass, stainless steel, and plastic substrates using hot-wire chemical vapor deposition (CVD). The 0.01-mm2 standalone diodes have a forward current-density (J) of near 10 kA/cm2 and a rectification ratio over 107 at ±2 V. The 25 μm2 array diodes have J > 104 A/cm2 and rectification of 105 at ±2V. On plastic substrates, we have also used plasma-enhanced CVD to deposit 10-μm diameter diodes with J ˜ 5 x 104 A/cm2. We found that the use of microcrystalline silicon (μc-Si) i- and nlayers results in higher current-density diodes than with amorphous silicon. Reducing the diode area increases the forward current density by lowering the voltage drop across the external series resistances. A prototype diode array memory based on 10-micron devices was successfully demonstrated by monolithically integrating diodes with a-Si:H switching elements. High current density diodes have potential applications in a variety of large area, thin-film electronic devices, in addition to a-Si:H-based memory. This could widen the application of thin-film silicon beyond its present industrial applications in thin-film transistors, solar cells, bolometers and photo-detectors.
We report on the area dependence of switching in both Cr/p+a-Si:H/Ag(Al) and Cr/p+μc-Si/Ag(Al) filament switches. The doped amorphous (a-Si:H) or microcrystalline (μc-Si) thin Si layers are made by hot-wire chemical vapor deposition. The device active region area (A) is varied over 5 orders of magnitude, from 10-7 to 10-2 cm2, using photolithographically defined Ag and Al top contacts. Before switching, the resistance of 100-μm2 devices is normally about 100 kΩ for μc-Si and 10 GΩ for a-Si:H. After switching with applied current ramps, the resistance decreases to a few hundred ohms in all a-Si devices and to a few thousands ohms in μc-Si devices. In both μc-Si and a-Si:H devices, the switching voltage (Vsw) decreases with increasing device area according to Vsw ~ V0-αln(A/A0) with α=0.3V for a-Si:H and α=0.04V for μc-Si. For both materials, the switching current roughly obeys the power law Isw ∞ Aβ with β~1. A statistical model is proposed to explain the area scaling of the switching voltage and relate the parameters to the material properties.