We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The 1992/3 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This 1996 volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. To put it succinctly, algebraic geometry has opened up to ideas and connections from other fields that have traditionally been far away. The editors of the volume, Herbert Clemens and Janos Kollar, chaired the organizing committee. Activities were centered around themes, one per month, under the guidance of experts in each area. There were also four short workshops, which attracted many participants and helped considerably in communicating the new directions in algebraic geometry to a large audience. This book gives a good idea of the intellectual content of the special yearand of the workshops.
KSB stability holds at codimension $1$ points trivially, and it is quite well understood at codimension $2$ points because we have a complete classification of $2$-dimensional slc singularities. We show that it is automatic in codimension $3$.