We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As part of a quality improvement project beginning in October 2011, our centre introduced changes to reduce radiation exposure during paediatric cardiac catheterisations. This led to significant initial decreases in radiation to patients. Starting in April 2016, we sought to determine whether these initial reductions were sustained.
Methods:
After a 30-day trial period, we implemented (1) weight-based reductions in preset frame rates for fluoroscopy and angiography, (2) increased use of collimators and safety shields, (3) utilisation of stored fluoroscopy and virtual magnification, and (4) hiring of a devoted radiation technician. We collected patient weight (kg), total fluoroscopy time (min), and procedure radiation dosage (cGy-cm2) for cardiac catheterisations between October, 2011 and September, 2019.
Results:
A total of 1889 procedures were evaluated (196 pre-intervention, 303 in the post-intervention time period, and 1400 in the long-term group). Fluoroscopy times (18.3 ± 13.6 pre; 19.8 ± 14.1 post; 17.11 ± 15.06 long-term, p = 0.782) were not significantly different between the three groups. Patient mean radiation dose per kilogram decreased significantly after the initial quality improvement intervention (39.7% reduction, p = 0.039) and was sustained over the long term (p = 0.043). Provider radiation exposure was also significantly decreased from the onset of this project through the long-term period (overall decrease of 73%, p < 0.01) despite several changes in the interventional cardiologists who made up the team over this time period.
Conclusion:
Introduction of technical and clinical practice changes can result in a significant reduction in radiation exposure for patients and providers in a paediatric cardiac catheterisation laboratory. These reductions can be maintained over the long term.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.