We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Archaeologists’ newfound ability to access vast digital collections creates opportunities but also presents challenges when those collections are from varied sources, including public institutions and private collectors. We illustrate these challenges by comparing two analyses of gender in Mimbres pottery images. Both analyses used the same procedures, but one included material in private collections, while the second drew on a smaller but more controlled sample. Gender distinctions and division of labor were revealed by the first analysis, but the results were not duplicated in the reanalysis using the controlled sample. We consider reasons for the difference, addressing how collectors’ interests may skew collections and suggesting that some particularly desirable Mimbres pottery designs were created using modern paint. The article concludes with recommendations for how archaeologists can best use mixed collections. These include considering how collections might be skewed and designing analyses to counterbalance likely issues, more chemical analyses with representative samples to gauge the extent of modern manipulation of Mimbres vessels, collecting data on the provenance (i.e., collection history) of material in order to try to trace the likelihood of post-excavation modifications, and studying the process of collecting as a means of understanding the authenticity of artifacts.
Cytokines and vitamin D both have a role in modulating the immune system, and are also potentially useful biomarkers in mental illnesses such as major depressive disorder (MDD) and schizophrenia. Studying the variability of cytokines and vitamin D in a healthy population sample may add to understanding the association between these biomarkers and mental illness. To assess genetic and environmental contributions to variation in circulating levels of cytokines and vitamin D (25-hydroxy vitamin D: 25(OH)D3), we analyzed data from a healthy adolescent twin cohort (mean age 16.2 years; standard deviation 0.25). Plasma cytokine measures were available for 400 individuals (85 MZ, 115 DZ pairs), dried blood spot sample vitamin D measures were available for 378 individuals (70 MZ, 118 DZ pairs). Heritability estimates were moderate but significant for the cytokines transforming growth factor-β1 (TGF-β1), 0.57 (95% CI 0.26–0.80) and tumor necrosis factor-receptor type 1 (TNFR1), 0.50 (95% CI 0.11–0.63) respectively. Measures of 25(OH)D3 were within normal range and heritability was estimated to be high (0.86, 95% CI 0.61–0.94). Assays of other cytokines did not generate meaningful results. These potential biomarkers may be useful in mental illness, with further research warranted in larger sample sizes. They may be particularly important in adolescents with mental illness where diagnostic uncertainty poses a significant clinical challenge.
Numerous studies have reported association between variants in the dystrobrevin binding protein 1 (dysbindin) gene (DTNBP1) and schizophrenia. However, the pattern of results is complex and to date, no specific risk marker or haplotype has been consistently identified. The number of single nucleotide polymorphisms (SNPs) tested in these studies has ranged from 5 to 20. We attempted to replicate previous findings by testing 16 SNPs in samples of 41 Australian pedigrees, 194 Australian cases and 180 controls, and 197 Indian pedigrees. No globally significant evidence for association was observed in any sample, despite power calculations indicating sufficient power to replicate several previous findings. Possible explanations for our results include sample differences in background linkage dis-equilibrium and/or risk allele effect size, the presence of multiple risk alleles upon different haplotypes, or the presence of a single risk allele upon multiple haplotypes. Some previous associations may also represent false positives. Examination of Caucasian HapMap phase II genotype data spanning the DTNBP1 region indicates upwards of 40 SNPs are required to satisfactorily assess all nonredundant variation within DTNBP1 and its potential regulatory regions for association with schizophrenia. More comprehensive studies in multiple samples will be required to determine whether specific DTNBP1 variants function as risk factors for schizophrenia.
A new class of porous membrane has been fabricated that is unique in its combination of nanoscale thickness (<50 nm) with macroscopic, yet robust, millimeter-scale lateral dimensions and tunable pore size in the range of ˜5nm to ˜100nm. The membrane material is porous nanocrystalline Si (pnc-Si)1, and is being scaled-up to commercial volumes by a startup company, SiMPore, Inc. Standard commercial separation membranes with pores in this size regime are polymeric materials (poly ether sulphone, cellulose, etc.), microns in thickness, leading to pore morphologies that resemble long narrow tubes or tortuous-path 3-D matrices. As pnc-Si membrane thickness approaches the pore diameters, a simplified structure of holes in a thin sheet results, greatly enhancing both diffusive and forced flow transport through the membrane, as predicted by classical transport theories2. Pnc-Si has confirmed these theoretical predictions, demonstrating record-breaking transport rates, in addition to precise size-separation of nanoparticles, viruses, proteins, and nucleic acids.Applications for this highly precise silicon-based membrane range from highly efficient separations and purification of biomolecules, complexes, and nanoparticles, to substrates for microscopy to cell culture and co-culture. SiMPore is focused on navigating this application space with the goal of quickly introducing products that will allow the company to become self-sustaining and profitable though direct sales or partnerships with market leaders. Key product development drivers include potential competitive performance advantages and perceived value to a particular market, the IP landscape, development costs of the membrane and the device package/interface, and alignment with existing in-house capabilities.
Email your librarian or administrator to recommend adding this to your organisation's collection.