We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Soient $F$ un corps global, et $G$ un groupe réductif connexe défini sur $F$. On prouve que si deux données endoscopiques de $G$ sont équivalentes en presque toute place de $F$, alors elles sont équivalentes. Le résultat est encore vrai pour l’endoscopie (ordinaire) avec caractère. On donne aussi, pour $F$ global ou local et $G$ quasi-simple simplement connexe, une description des données endoscopiques elliptiques de $G$.
Cohomology of Drinfeld Modular Varieties provides an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. This second volume is concerned with the Arthur-Selberg trace formula, and with the proof in some cases of the Rmamanujan-Petersson conjecture and the global Langlands conjecture for function fields. It is based on graduate courses taught by the author, who uses techniques which are extensions of those used to study Shimura varieties. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated. Several appendices on background material keep the work reasonably self-contained. It is the first book on this subject and will be of much interest to all researchers in algebraic number theory and representation theory.