The stress-velocity relation of a single dislocation moving in a 2-D lattice has been studied using interactive molecular dynamic simulations. A hybrid interatomic model potential which couples Lennard-Jones(LJ) potential and the Embedded Atom Model (EAM) potential, is used to include radial and many body interactions. Both parts are assembled by a parameter so that the potential can be changed to describe a pure radial interaction to a strong many body interaction in a continuous way. Setting up a constant-stress scenario, the movement of a single dislocation is tracked from zero velocity state, up to a terminal velocity state. The external stress vs. terminal velocity curves have been obtained in the subsonic regime for different values of the coupling parameter. Non-linear relations are found velocity regime 0.1c t to 0.6c t, where c t is the transverse speed of sound. Results have been analyzed using an augmented Peierls model to seek the connection between atomic scale, continuum variables and the limiting speed of dislocations