We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
What proportion of integers $n \leq N$ may be expressed as $x^2 + dy^2$ for some $d \leq \Delta $, with $x,y$ integers? Writing $\Delta = (\log N)^{\log 2} 2^{\alpha \sqrt {\log \log N}}$ for some $\alpha \in (-\infty , \infty )$, we show that the answer is $\Phi (\alpha ) + o(1)$, where $\Phi $ is the Gaussian distribution function $\Phi (\alpha ) = \frac {1}{\sqrt {2\pi }} \int ^{\alpha }_{-\infty } e^{-x^2/2} dx$.
A consequence of this is a phase transition: Almost none of the integers $n \leq N$ can be represented by $x^2 + dy^2$ with $d \leq (\log N)^{\log 2 - \varepsilon }$, but almost all of them can be represented by $x^2 + dy^2$ with $d \leq (\log N)^{\log 2 + \varepsilon}\kern-1.5pt$.
In recent work, we considered the frequencies of patterns of consecutive primes (mod q) and numerically found biases toward certain patterns and against others. We made a conjecture explaining these biases, the dominant factor in which permits an easy description but fails to distinguish many patterns that have seemingly very different frequencies. There was a secondary factor in our conjecture accounting for this additional variation, but it was given only by a complicated expression whose distribution was not easily understood. Here, we study this term, which proves to be connected to both the Fourier transform of classical Dedekind sums and the error term in the asymptotic formula for the sum of φ(n).
We obtain lower bounds of the correct order of magnitude for the 2kth moment of the Riemann zeta function for all k≥1. Previously such lower bounds were known only for rational values of k, with the bounds depending on the height of the rational number k. Our new bounds are continuous in k, and thus extend also to the case when k is irrational. The method is a refinement of an approach of Rudnick and Soundararajan, and applies also to moments of L-functions in families.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.