We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
Question–answering (QA) systems have proven to be helpful, especially to those who feel uncomfortable entering keywords, sometimes extended with search symbols such as +, *, and so forth. In developing such systems, the main focus has been on the enhanced retrieval performance of searches, and recent trends in QA systems center on the extraction of exact answers. However, when their usability was evaluated, some users indicated that they found it difficult to accept the answers because of the absence of supporting context and rationale. Current approaches to address this problem include providing answers with linking paragraphs or with summarizing extensions. Both methods are believed to be sufficient to answer questions seeking the names of objects or quantities that have only a single answer. However, neither method addresses the situation when an answer requires the comparison and integration of information appearing in multiple documents or in several places in a single document. This paper argues that coherent answer generation is crucial for such questions, and that the key to this coherence is to analyze texts to a level beyond sentence annotations. To demonstrate this idea, a prototype has been developed based on rhetorical structure theory, and a preliminary evaluation has been carried out. The evaluation indicates that users prefer to see the extended answers that can be generated using such semantic annotations, provided that additional context and rationale information are made available.
Previous applications of genetic programming (GP) have been restricted to searching for algebraic approximations mapping the design parameters (e.g., geometrical parameters) to a single design objective (e.g., weight). In addition, these algebraic expressions tend to be highly complex. By adding a simple extension to the GP technique, a powerful design data analysis tool is developed. This paper significantly extends the analysis capabilities of GP by searching for multiple simple models within a single population by splitting the population into multiple islands according to the design variables used by individual members. Where members from different islands “cooperate,” simple design models can be extracted from this cooperation. This relatively simple extension to GP is shown to have powerful implications to extracting design models that can be readily interpreted and exploited by human designers. The full analysis method, GP heuristics extraction method, is described and illustrated by means of a design case study.
Email your librarian or administrator to recommend adding this to your organisation's collection.