We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main aim was to use pre-calculated correction factors and calibration factors for measurement of accuracy of dose delivery before implementation of such in vivo dosimetry on real patients visiting for first radiation treatment. These factors were verified by generating the most common treatment plans on human phantom except for breast and colon using cobalt-60 unit.
Materials and methods
Six treatment plans were generated, i.e. nasopharynx, bladder, prostate, brain, larynx and lung of human phantom, total 18 fields were planned keeping in view the correction factors which are to be verified. MULTIDATA Decision Support System 2.5, Shimadzu simulator, Isorad diode-n type, electrometer patient dose monitor and ATOM Adult male human phantom were used.
Results and conclusion
For 18 fields, the dose delivery was accurate in the range 0·29–6·74%. The deviation between measured and expected doses to nasopharynx, lung, bladder, prostate, brain and larynx cases of human phantom ranged from 1·44–3·89%, 0·29–0·54%, 0·44–6·18%, 0·54–5·16%, 0·33–4·90%, 5·58–6·74%, respectively. In 30 palliative patient cases, the first radiation treatment was also monitored. The accuracy of dosimety ranged from 1·05% to 5·35%. This study is helpful to identify areas of improvement in treatment of patients like quality control/quality assurance (QA) of treatment planning system, beam data modifications, machine repair maintenance, QA audit in radiotherapy.
The objective was to determine diode characteristics before actual dose verification on human phantom and patients.
Materials and methods
The reliability and stability of equipment, signal stability, precision, dose response linearity, field flatness, perturbation of radiation dose, plastic to water conversion factor (Kpl), ionisation chambers (ICs) and diode calibration were determined. Correction factors for tray (CFtray), wedge (CFwedge), field size (CFFS), SSD (CFSSD), angle (CFangle) and block (CFblock) were found. Patient dose monitor, Isorad diode (n-type) and IC (PTW Frieburg), Co-60 unit (Theratron), ATOM Adult male human phantom (Model 701-D, CIRS) were used.
Results and conclusion
Good signal stability, precise data, and linear dose response, variation of 0·500% and 5·000% in field flatness and perturbation tests, respectively, were noted. Kpl was 1·006 for IC PTW Frieburg TW30013, 0114. The diode calibration factor was 0·989. CFtray, CFFS, CFSSD, CFangle, CFblock were 1·001, 1·001, 0·997, 1·006 and 0·990, respectively. CFwedge were 1·024, 1·030 and 1·038 for 30°, 45° and 60° wedges, respectively. The verification of above correction factors (CFs) on Nasopharynx and lung of human phantom was also done.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.