We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The aim of our study is to retrospectively report the radiobiological aspects for intensity-modulated proton therapy (IMPT) against intensity-modulated radiation therapy (IMRT) for patients with head and neck cancer treated at our institution. A secondary goal is to reinforce current model-based approaches to head and neck cancer patient selection for IMPT.
Materials and Methods:
Eighteen patients were evaluated with prescription doses ranging from 50 to 70 Gy delivered in 2 Gy per fraction. The dose volume histograms (DVH) were used to calculate equivalent uniform dose (EUD), tumour control probability (TCP) and normal tissue complication probability (NTCP) for biophysical comparison using mechanistic mathematical dose response models. Absolute values of TCP and NTCP were then compared between IMPT and IMRT.
Results:
The dose models demonstrate a minimal radiobiological advantage for IMPT compared to IMRT in treating head and neck cancers. Absolute values of TCP were slightly higher, while absolute values of NTCP were slightly lower for IMPT versus IMRT.
Conclusions:
Further studies are needed to determine if the radiobiological advantage indeed translates to a therapeutic advantage for patients.
To identify treatment outcome, dose uniformity, treatment time, toxicity among 3D conformal therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated arc therapy (VMAT) for non-small-cell lung cancer (NSCLC) based on literature review.
Methods:
A literature search was conducted using PubMed/MEDLINE, BMC—part of Springer Nature, Google Scholar and iMEDPub Ltd with the following keywords for filtering: 3D-CRT, IMRT, VMAT, lung cancer, local control and radiobiology. A total of 14 publications were finally selected for the comparison of 3D-CRT, IMRT and VMAT to determine which technique is superior or inferior among these three.
Results:
Compared to 3D-CRT, IMRT delivers more precise treatment, has better conformal dose coverage to planning target volume (PTV) that covers gross tumour with microscopic extension, respiratory tumour motion and setup margin. 3D-CRT has large number of limitations: low overall survival (OS), large toxicity, secondary malignancies.
Conclusions:
It is difficult to choose the best technique for treating NSCLC due to patient conditions and technique availability. A high-precision treatment may improve tumour control probability (TCP) and patient’s quality of life. VMAT, whether superior or not, needs more clinical trials to treat NSCLC and requires longer dose optimisation time with the greatest benefit of rapid treatment delivery, improved patient comfort, reduced intrafraction motion and increased patient throughput compared to IMRT and 3D-CRT.
The objective of this study has been to identify monitor unit (MU) and treatment time variations, volume coverage dissimilarity among 3D conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT) treatment plans for head and neck cancer (HNC) based on literature review.
Methods:
A number of HNC cases were studied with the investigation of conformity and homogeneity index.
Results:
When high-dose modulation was required around small organs at risk (OARs), a clinically acceptable IMRT plan was achieved as VMAT usually required longer dose optimisation time. The greatest benefit of VMAT has been rapid treatment delivery allowing improved patient comfort, reduced intra-fraction motion and increased patient throughput. In some papers, 3D-CRT was shown not to meet well the requirements on parotid glands. One paper showed that cerebellum dose was lower for 3D-CRT than IMRT. However, it was found in other papers that OAR sparing with 3D-CRT was reasonable but in complex cases not enough.
Conclusions:
IMRT usually consists of several treatment fields with different directions, hundreds of beam lets with modulated intensity, an advantage over 3D-CRT, whereas VMAT has advantage over IMRT due to rotating beam utilisation. VMAT has lower total MU and treatment times than IMRT and 3D-CRT, while maintaining similar dosimetric endpoints.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.