We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The “Smart Emergency Call Point” is a device designed for requesting assistance and facilitating rapid responses to emergencies. The functionality of smart emergency call points has evolved to include features as real-time photo transmission and communication capabilities for both staff and emergency personnel. These devices are being used to request Emergency Medical Services (EMS) on university campuses. Despite these developments, there has been a lack of previous studies demonstrating significant advantages of integrating smart emergency call points into EMS systems.
Study Objective:
The primary goal of this study was to compare the response times of EMS between traditional phone calls and the utilization of smart emergency call points located on university campuses. Additionally, the study aimed to provide insights into the characteristics of smart emergency call points as a secondary objective.
Methods:
This retrospective database analysis made use of information acquired from Thailand’s EMS at Srinagarind Hospital. The data were gathered over a period of four years, specifically from January 2019 through January 2022. The study included two groups: the first group used the phone number 1669 to request EMS assistance, while the second group utilized the smart emergency call point. The primary focus was on the response times. Additionally, the study documented the characteristics of the smart emergency call points that were used in the study.
Results:
Among the 184 EMS operations included in this study, 60.9% (N = 56) involved females in the smart emergency call point group. Notably, the smart emergency call point group showed a higher frequency of operations between the hours of 6:00am and 6:00pm when compared to the 1669 call group (P = .020). In dispatch triage, the majority of emergency call points were categorized as non-urgent, in contrast to the phone group for 1669 which were primarily cases categorized as urgent (P = .010). The average response time for the smart emergency call point group was significantly shorter, at 6.01 minutes, compared to the phone number 1669 group, which had an average response time of 9.14 minutes (P <.001).
Conclusion:
In the context of calling for EMS on a university campus, the smart emergency call points demonstrate a significantly faster response time than phone number 1669 in Thailand. Furthermore, the system also offers the capability to request emergency assistance.
The smart glasses were implemented as an innovative communication tool to enhance effectiveness in the field. The traditional mode of communication for Emergency Medical Services (EMS) was radio, which had significant restrictions, primarily that they were unable to transmit any visual data. To enhance efficiency, the smart glasses were used for a more accurate assessment of the condition of patients during transportation. At this time, however, no prior study has shown significant benefits of employing smart glasses into EMS.
Study Objective:
The primary objective of this study is to compare the duration of patient care in an ambulance between the use and non-use of smart glasses. The secondary objective is to identify the characteristics of data communication between the ambulance and the hospital.
Methods:
This retrospective study utilized data gathered from closed-circuit television (CCTV) in ambulances at Srinagarind Hospital, Thailand. The data were collected over a six-month period, specifically from July through December 2021. The study included two groups: the smart glasses group and no smart glasses groups, both used during EMS operations. The primary data collected focused on the duration of patient care in the ambulance. Additionally, the type and characteristics of data transfers via smart glasses during EMS operations were also recorded.
Results:
Out of the 256 EMS operations included in this study, 53.1% (N = 68) of the participants in the smart glasses group were male. The majority of operations were performed during the afternoon shift in both groups. The average patient care time in the smart glasses group was 10.07 minutes, while it was 5.10 minutes in the no smart glasses group (P <.001), indicating a significant difference. Visual data communication between the ambulance and the hospital via smart glasses predominantly involved vital signs (100.0%), physical examination (56.3%), and neurological examination (42.2%). The use of audio data from the hospital to the ambulance primarily included taking additional patient history (26.6%) and performing physical examinations (19.5%).
Conclusion:
The implementation of smart glasses in EMS operations resulted in an increase in patient care time in the ambulance. Furthermore, the use of smart glasses facilitated an effective channel of real-time two-way communication between the ambulance and the hospital.
The motorcycle ambulance is used for quick access to patients. The response time to reach the patient takes less time than with a van ambulance. Moreover, accidents involving ambulances tend to be higher. However, at present, there is no study regarding the appropriate situation used of motorcycle ambulances in Emergency Medical Services (EMS) in Thailand.
Study Objective:
This study aims to optimize the travel distance and the operation time of motorcycle ambulances used.
Methods:
This study was a prospective, randomized controlled study at the EMS unit of Srinagarind Hospital, Thailand. The data collection period was from November 2021 through May 2022. All data involving dispatch of both ambulances in need were collected.
Results:
A total of 2,398 cases of EMS operation were examined. The mean age of the patients in the motorcycle ambulance group was 42.5 (SD = 6.5) years, and 51.3% (n = 616) were male. The response time for motorcycle ambulances and van ambulances during the operation time between 6:00am-9:00am was 6.2 minutes and 9.1 minutes, respectively. The response times for motorcycle ambulances and van ambulances regarding distance traveled from 0-5km were 4.2 minutes and 7.5 minutes, respectively (P <.001); distance traveled from 5-10km were 6.3 minutes and 8.2 minutes, respectively (P = .010).
Conclusion:
The motorcycle ambulance can reach patients faster than the ambulance at the operation time from 6:00am-9:00am and 3:00pm-6:00pm. This study focused on the distance less than 10 kilometers.
Mass-casualty incidents (MCIs) are events in which many people are injured during the same period of time. This has major implications in regards to practical concerns and planning for both personnel and medical equipment. Smart glasses are modern tools that could help Emergency Medical Services (EMS) in the estimation of the number of potential patients in an MCI. However, currently there is no study regarding the advantage of employing the use of smart glasses in MCIs in Thailand.
Study Objective:
This study aims to compare the overall accuracy and amount of time used with smart glasses and comparing it to manual counting to assess the number of casualties from the scene.
Methods:
This study was a randomized controlled trial, field exercise experimental study in the EMS unit of Srinagarind Hospital, Thailand. The participants were divided into two groups (those with smart glasses and those doing manual counting). On the days of the simulation (February 25 and 26, 2022), the participants in the smart glasses group received a 30-minute training session on the use of the smart glasses. After that, both groups of participants counted the number of casualties on the simulation field independently.
Results:
Sixty-eight participants were examined, and in the smart glasses group, a total of 58.8% (N = 20) of the participants were male. The mean age in this group was 39.4 years old. The most experienced in the EMS smart glasses group had worked in this position for four-to-six years (44.1%). The participants in the smart glasses group had the highest scores in accurately assessing the number of casualties being between 21-30 (98.0%) compared with the manual counting group (89.2%). Additionally, the time used for assessing the number of casualties in the smart glasses group was shorter than the manual counting group in tallying the number of casualties between 11-20 (6.3 versus 11.2 seconds; P = .04) and between 21-30 (22.1 versus 44.5 seconds; P = .02).
Conclusion:
The use of smart glasses to assess the number of casualties in MCIs when the number of patients is between 11 and 30 is useful in terms of greater accuracy and less time being spent than with manual counting.
Prehospital ultrasounds can be considered a new form of diagnostic tool when taking into account their small structure and due to the fact that nowadays, they are used in the care of emergency patients. However, at present, there is no study regarding the advantage of ultrasound usage in prehospital settings in Thailand.
Study Objective:
This study aims to determine the sonographic characteristics recorded by handheld ultrasounds used in prehospital care and the diagnostic accuracy of ultrasounds for prehospital patients.
Methods:
A cross-sectional study was conducted on prehospital patients who underwent point-of-care ultrasound (POCUS) examination on Emergency Medical Service (EMS) operations at Srinagarind Hospital, Thailand from January 2021 through December 2021. The ultrasound images, the electronic emergency department medical records, and the EMS database were recorded and reviewed by a team of emergency physicians. The quality of prehospital ultrasound examinations was assessed by comparing the diagnoses at the scene with those taken at the hospital.
Results:
One hundred sixty-nine prehospital patients who received POCUS examinations were examined over a one-year period. All (100.0%) of the scans were for medical cases. No ultrasound protocol was used in the prehospital care. Two hundred eight POCUS examinations were performed in this study. The most common POCUS indication was dyspnea (45.6%), followed by hypotension/shock (30.1%), and finally syncope (8.2%). The most common area where POCUS was performed was on the lung (37.0%), followed by the inferior vena cava (30.8%), and finally for cardiac cases (26.4%). This study found that 34.9% of sonographic findings could be considered abnormal. The diagnoses of prehospital patients were confirmed by using POCUS in 66 cases (39.1%) with the accuracy of prehospital diagnosis reaching a peak of 75.8%.
Conclusion:
This study shows POCUS examinations can be effectively used in prehospital care. The prehospital diagnosis given by physicians administering treatment who used POCUS examinations correlated with the in-hospital diagnosis.
Motorcycles can be considered a new form of smart vehicle when taking into account their small and modern structure and due to the fact that nowadays, they are used in the new role of ambulance to rapidly reach emergency patients in large cities with traffic congestion. However, there is no study regarding the measuring of access time for motorcycle ambulances (motorlances) in large cities of Thailand.
Study Objective:
This study aims to compare access times to patients between motorlances and conventional ambulances, including analysis of the use of automated external defibrillators (AEDs) installed on motorlances to contribute to the sustainable development of public health policies.
Methods:
A cross-sectional study was conducted on all motorlance operations in Emergency Medical Services (EMS) at Srinagarind Hospital, Thailand from January 2019 through December 2020. Data were recorded using a national standard operation record form for Thailand.
Results:
Two hundred seventy-one motorlance operations were examined over a two-year period. A total of 52.4% (N = 142) of the patients were male. The average times from dispatch to vehicle (motorlance and traditional ambulance) being en route (activation time) for motorlance and ambulance in afternoon shift were 0.59 minutes and 1.45 minutes, respectively (P = .004). The average motorlance response time in the afternoon shift was 6.12 minutes, and ambulance response time was 9.10 minutes at the same shift. Almost all of the motorlance operations (97.8%) were found to have no access to AED equipment installed in public areas. The average time from dispatch to AED arrival on scene (AED access time) was 5.02 minutes.
Conclusion:
The response time of motorlances was shorter than a conventional ambulance, and the use of AEDs on a motorlance can increase the chances of survival for patients with cardiac arrest outside the hospital in public places where AEDs are not available.
Increasing numbers of marathon running events are taking place around the world. The difficulty encountered in the management of mass gatherings, especially running in marathons, is how emergency services can deliver treatment in a timely manner. Therefore, for this kind of situation, preparation is the key to success in terms of patient management.
Study Objective:
The aim of this study was to describe the presentation of cases at a start-finish medical post in an international marathon race set in a rural area.
Methods:
All medical record forms were collected from the start-finish medical post of the Khon Kaen International Marathon (KKIM) 2020. The race took place on January 26, 2020. The data were coded by two authors, and in the case of different codes, the final codes were determined by discussion.
Results:
The total number of participants in this event was 16,489. Participants who used the start-finish medical post numbered 74 (44.8 people per 10,000). More than one-half of patients were male (41; 56.9%), while 31 (34.0%) were female. The age range of the casualties was from 17 to 88 years old. The rate of incidence for those who used this post was 44.8 per 10,000 participants. The greatest density of users was at 3.40 hours after the marathon had started. The common symptoms which were found consisted of 17 soft tissue injuries (23.0%), 15 instances of cramps (20.3%), and 11 musculoskeletal (MSK) injuries (14.9%). Almost all patients were discharged, and only two of the cases were actually admitted to the hospital. No statistical significance between males and females was found (OR = 0.81; 95% CI, 0.51-1.3). However, marathon and half-marathon runners had a higher risk of being casualties (OR = 3.49; 95% CI, 1.71-7.15 and OR = 3.51; 95% CI, 1.79-6.88).
Conclusion:
The injuries of most of the patients who used the medical post at a start-finish point were mild. Distances which are longer than 20km increase the risk for getting injured. However, a prospective study and multi-session interpretation is recommended.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.