We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Medical advancements have encouraged minimally invasive surgical repair of congenital heart defects such as ventricular septal defects (VSDs), and the diagnostic process can now be carried out using non-traditional techniques such as pulse oximetry. This, in turn, has improved clinical outcomes with reduced complication rates post-surgery. However, the variations in type of VSDs, age of patient, comorbidities, and access to closure devices may limit the efficacy of surgical advancements.
Methods:
Articles were identified amongst Scopus, MEDLINE, and PubMed using various relevant search strings using PRISMA guidelines. Of the 115 articles initially extracted, 10 were eventually reviewed after duplicates and irrelevant studies were removed.
Results:
Of the 24 eligible articles, 10 papers were selected for analysis. Minimally invasive approaches to VSD repair was associated with satisfactory short-term outcomes when compared to open repair. For diagnosis of congenital VSD, whilst recent advances such as pulse oximetry method and genome analysis are more sensitive, the limited availability and access to such investigatory methods must be recognised.
Conclusion:
Pulse oximetry and fetal echocardiography are established non-invasive diagnostic tools for VSD. The recent advances in minimally invasive treatment options including periventricular approach and transcatheter techniques have improved patient outcomes, yet at the expense of higher residual rates. Careful patient selection for each technique and follow-up should be planned through multidisciplinary team meetings.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.