We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Algorithmic graph theory has been expanding at an extremely rapid rate since the middle of the twentieth century, in parallel with the growth of computer science and the accompanying utilization of computers, where efficient algorithms have been a prime goal. This book presents material on developments on graph algorithms and related concepts that will be of value to both mathematicians and computer scientists, at a level suitable for graduate students, researchers and instructors. The fifteen expository chapters, written by acknowledged international experts on their subjects, focus on the application of algorithms to solve particular problems. All chapters were carefully edited to enhance readability and standardize the chapter structure as well as the terminology and notation. The editors provide basic background material in graph theory, and a chapter written by the book's Academic Consultant, Martin Charles Golumbic (University of Haifa, Israel), provides background material on algorithms as connected with graph theory.
The field of graph theory has undergone tremendous growth during the past century. As recently as the 1950s, the graph theory community had few members and most were in Europe and North America; today there are hundreds of graph theorists and they span the globe. By the mid 1970s, the subject had reached the point where we perceived a need for a collection of surveys of various areas of graph theory: the result was our three-volume series Selected Topics in Graph Theory, comprising articles written by distinguished experts and then edited into a common style. Since then, the transformation of the subject has continued, with individual branches (such as chromatic graph theory) expanding to the point of having important subdivisions themselves. This inspired us to conceive of a new series of books, each a collection of articles within a particular area of graph theory written by experts within that area. The first three of these books were the companion volumes to the present one, on algebraic graph theory, topological graph theory and structural graph theory. This is thus the fourth volume in the series.
A special feature of these books is the engagement of academic consultants (here, Bjarne Toft) to advise us on topics to be included and authors to be invited.We believe that this has been successful, with the result that the chapters of each book cover the full range of area within the given area. In the present case, the area is chromatic graph theory, with chapters written by authors from around the world. Another important feature is that, where possible, we have imposed uniform terminology and notation throughout, in the belief that this will aid readers in going from one chapter to another. For a similar reason, we have not tried to remove a small amount of material common to some of the chapters.
We hope that these features will facilitate usage of the book in advanced courses and seminars.
Chromatic graph theory is a thriving area that uses various ideas of 'colouring' (of vertices, edges, and so on) to explore aspects of graph theory. It has links with other areas of mathematics, including topology, algebra and geometry, and is increasingly used in such areas as computer networks, where colouring algorithms form an important feature. While other books cover portions of the material, no other title has such a wide scope as this one, in which acknowledged international experts in the field provide a broad survey of the subject. All fifteen chapters have been carefully edited, with uniform notation and terminology applied throughout. Bjarne Toft (Odense, Denmark), widely recognized for his substantial contributions to the area, acted as academic consultant. The book serves as a valuable reference for researchers and graduate students in graph theory and combinatorics and as a useful introduction to the topic for mathematicians in related fields.
The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
The origins of topological graph theory lie in the 19th century, largely with the four colour problem and its extension to higher-order surfaces – the Heawood map problem. With the explosive growth of topology in the early 20th century, mathematicians like Veblen, Rado and Papakyriakopoulos provided foundational results for understanding surfaces combinatorially and algebraically. Kuratowski, MacLane and Whitney in the 1930s approached the four colour problem as a question about the structure of graphs that can be drawn without edge-crossings in the plane. Kuratowski's theorem characterizing planarity by two obstructions is the most famous, and its generalization to the higher-order surfaces became an influential unsolved problem.
The second half of the 20th century saw the solutions of all three problems: the Heawood map problem by Ringel, Youngs et al. by 1968, the four colour problem by Appel and Haken in 1976, and finally the generalized Kuratowski problem by Robertson and Seymour in the mid-1990s. Each is a landmark of 20th-century mathematics. The Ringel–Youngs work led to an alliance between combinatorics and the algebraic topology of branched coverings. The Appel–Haken work was the first time that a mathematical theorem relied on exhaustive computer calculations. And the Robertson–Seymour work led to their solution of Wagner's conjecture, which provides a breathtaking structure for the collection of all finite graphs, a collection that would seem to have no structure at all.
Each of these problems centres on the question of which graphs can be embedded in which surfaces, with two complementary perspectives – fixing the graph or fixing the surface.
The field of graph theory has undergone tremendous growth during the past century. As recently as fifty years ago, the graph theory community had few members and most were in Europe and North America; today there are hundreds of graph theorists and they span the globe. By the mid-1970s, the field had reached the point where we perceived the need for a collection of surveys of the areas of graph theory: the result was our three-volume series Selected Topics in Graph Theory, comprising articles written by distinguished experts in a common style. During the past quarter-century, the transformation of the subject has continued, with individual areas (such as topological graph theory) expanding to the point of having important sub-branches themselves. This inspired us to conceive of a new series of books, each a collection of articles within a particular area written by experts within that area. The first of these books was our companion volume on algebraic graph theory, published in 2004. This is the second of these books.
One innovative feature of these volumes is the engagement of academic consultants (here, Jonathan Gross and Thomas Tucker) to advise us on topics to be included and authors to be invited. We believe that this has been successful, the result being chapters covering the full range of areas within topological graph theory written by authors from around the world. Another important feature is that we have imposed uniform terminology and notation throughout, as far as possible, in the belief that this will aid readers in going from one chapter to another.