We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Magnetic resonance localization of gold markers for radiotherapy is critical for the treatment planning of prostatic cancer. This study sought to enhance the visualization of gold markers by applying the three-dimensional gradient echo (3D GRE) T2* sequence and comparing it with CT scan.
Methods:
29 Patients who underwent both a 3D GRE T2* sequence and a CT were evaluated by an oncologist and radiologist. The SNR, CNR and prostate volume were calculated.
Result:
The depiction of gold markers using 3D GRE T2* exhibited an enhanced quality in comparison to CT (p < 0·05). Prostate SNR, fat SNR, muscle SNR and Osteon SNR were found to be elevated in 3D GRE T2*, as opposed to the CT (p < 0·05). The comparison of the average prostate volume revealed a significant difference between the mean measurements (sig = 0, p < 0·05). The prostate Volume in 3D GRE T2* 29·03% smaller in magnitude when compared to the CT, thus bringing it into closer alignment with its authentic dimensions.
Conclusion:
The comparison between the MRI and the CT demonstrated that 3D GRE T2* is an exceptional tool for visualizing gold markers in the realm of prostate cancer radiotherapy planning. It has the potential to minimize collateral damage to healthy cells while enhancing the precision of cancer cell targeting.
To evaluate the dosimetric effect of modelling a non-homogeneous couch on patients’ quality assurance (QA) gamma pass rates for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques.
Materials and Methods:
A non-homogeneous treatment couch (TxT 550 TTM, CIVCO, USA) was imaged using the LINAC mounted cone-beam computer tomography (CBCT) system. Modelling this couch in different situations, including incomplete (homogeneous model), correct model and not defined situations in the treatment planning system (TPS), was performed based on the geometrical and material densities data extracted from the CBCT images. Calculated gamma pass rates between TPS dose calculations and the measurements in a phantom for different couch models were obtained and compared at two gamma criteria (2%-2 mm and 3%-3 mm).
Results:
Comparing TPS calculations for the correct modelled couch and the measurements showed high gamma pass rates for both the IMRT and VMAT techniques (96·5 ± 0·9%, 99·2 ± 0·5% for IMRT in 2%-2 mm and 3%-3 mm criteria; 97·5 ± 0·8%, 99·4 ± 0·5% for VMAT). The overall gamma pass rate of the IMRT plan QAs was reduced by about 2% and 3% on average for incomplete and no couch modelling, respectively. These reductions for VMAT techniques were 2·5% and 4·3%, respectively.
Conclusions:
Non-homogeneous couches have different parts with different attenuations, which can be correctly defined using LINAC CBCT. Modelling of treatment couch has a significant effect on patient QA results for VMAT and IMRT plans, especially in radiation fields/subfield transmitting from the couch. We suggest using LINAC CBCTs as an appropriate device for couch modelling in modulated radiotherapy techniques.
To compare the acute radiation-induced bowel and bladder toxicities of two hypofractionated radiotherapy (HFRT) regimens in localised prostate cancer (PCa).
Materials and methods:
This trial consists of patients with histologically confirmed stage T1-T3aN0M0 PCa, a prostate-specific antigen concentration of 40 ng/mL or lower, and Eastern Cooperative Oncology Group performance status of 0–2. Participants were randomly assigned (1:1) to 56 Gy in 16 fractions over 4 weeks (arm A) or 70·2 Gy in 26 fractions over 5 weeks (arm B). Acute bowel and bladder toxicities were assessed using Radiation Therapy Oncology Group criteria.
Results:
Between June 2018 and December 2019, 40 patients were randomly assigned to treatment with 4-week (n = 20) and 5-week HFRT (n = 20). In the third month after completion of radiotherapy, the cumulative incidence of acute bowel and bladder toxicities of arms A and B was 20 versus 5% and 70 versus 85%, respectively. The cumulative incidence of grade 2 or worse bowel and bladder toxicities of the 5-week regimen was non-inferior to 4-week HFRT [bowel toxicity: 5% (arm A) versus 5% (arm B), bladder toxicity: 50% (arm A) versus 60% (arm B), p = 0·52).
Findings:
The 5-week regimen of HFRT is non-inferior to 4-week HFRT in terms of acute bowel and bladder toxicities.
To quantify the relationship between the planning target volume (PTV) dose homogeneity and organs at risk (OARs) sparing in correlation with anatomical parameters in prostate intensity-modulated radiotherapy (IMRT).
Materials and methods
Nine IMRT plans with various target dose constraints’ priorities were created for 15 prostate cancer patients. Selected PTV and OARs parameters were calculated for the patients. A trade-off was assessed between homogeneity index (HI) and OAR sparing. Several anatomical parameters were evaluated to investigate their effects on the OAR sparing and HI.
Results
Inverse exponential relationships were found between the OAR sparing and HI (average R2 of 0·983 and 0·994 for bladder and rectum, respectively). Decreasing the priority led to more OARs sparing (normal tissue complication probability reduction: 97·6 and 74·5%; mean dose reduction: 16·3 and 11·3% for bladder and rectum, respectively) and worsening of the HI (0·095–0·322) but with no significant effect on tumour control probability. Furthermore, OARs volumes, distances between OARs and PTV and their joint volumes had stronger correlations with OARs’ mean doses.
Conclusion
Enforcement of target dose constraints was more effective on the improvement of HIs for the patients with initial high HI values at low dose constraints’ priorities. Reducing the priority had more effects on the OARs sparing compared to HI, especially for the patients with high OAR doses in high priority plans. This can be attributed to smaller distances or greater joint volumes between the OARs and PTV.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.